• Title/Summary/Keyword: surfaces characteristics

Search Result 1,649, Processing Time 0.028 seconds

Dynamic Characteristics of Droplet Impinging on Multi-layer Texture Surfaces (이중으로 텍스쳐 된 표면에 충돌하는 액적의 동적 특성)

  • Moon, Joo Hyun;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.58-63
    • /
    • 2016
  • This study presents the dynamic characteristics of an impinging droplet on hydrophobic and hydrophilic surfaces with various texture area fractions. The flat surface was fabricated by using the drilling technique to make micro-meter hole-patterned surfaces, which shows hydrophobic textured surfaces. Moreover, the hydrophilic textured surfaces were manufactured by anodizing technique on the micro-meter hole-patterned surfaces to generate multi-layer surfaces. Impinging droplet experiments were conducted for various hole-patterned surfaces, with changing impact velocity and texture area fractions. It is observed that an anodizing technique increases wettability by decrease in hole diameter on the textured surfaces. However, micro-drilled surfaces decreases wettability because the hole diameter was so large that air can be trapped under the holes. In addition, the maximum spreading diameter decreases with the texture area fraction for the micro-drilled surfaces because of decrease in wettability.

Frictional Characteristics of Wire Electric Discharge Machined STDll Surface (STD11 와이어 방전가공면의 마찰특성)

  • 김영욱;조성산
    • Tribology and Lubricants
    • /
    • v.16 no.4
    • /
    • pp.253-258
    • /
    • 2000
  • Frictional behavior of wire electric discharge machined surfaces of spheroidized annealed STDll steel was investigated. The surfaces were produced with a various series of finish cuts where pulse energy was reduced with increase in the number of finish cuts. Roughness and micro-hardness of the surfaces were also measured. It is observed that the increase in the number of finish cuts produces the surface exhibiting lower frictional resistance followed by higher resistance after considerable wear. Effects of finish cuts on the friction characteristics are discussed with the aid of roughness and micro-hardness of the surfaces.

Lubrication Properties of Various Pattern Shapes on Rough Surfaces Considering Asperity Contact (돌기접촉을 고려한 거친 표면 위 다양한 패턴 형상에 따른 윤활 특성 연구)

  • Kim, Mi-Ru;Lee, Seung-Jun;Jeong, Jae-Ho;Lee, Deug-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.39-46
    • /
    • 2018
  • Two surfaces that have relative motion show different characteristics according to surface roughness or surface patterns in all lubrication areas. For two rough surfaces with mixed lubrication, this paper proposes a new approach that includes the contact characteristics of the surfaces and a probabilistic method for a numerical analysis of lubrication. As the contact area of the two surfaces changes according to the loading conditions, asperity contact is very important. An average flow model developed by Patir-Cheng is central to the study of lubrication for rough surfaces. This average flow model also refers to a multi-asperity contact model for deriving a modified Reynolds equation and calculating the lubricant characteristics of a bearing surface with random roughness during fluid flow. Based on the average flow model, this paper carried out a numerical analysis of lubrication using a contact model by considering a load change made by the actual contact of asperities between two surfaces. Lubrication properties show different characteristics according to the surface patterns. This study modeled various geometric surface patterns and calculated the characteristics of lubrication.

Condensing Characteristics of Pin-finned Surfaces on Pool Boiling in FC-72 (풀비등에서 소형 사각기둥핀 배열형상에 따른 FC-72의 응축특성)

  • Karng, Sarng-Woo;Kim, Seo-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.7
    • /
    • pp.498-504
    • /
    • 2011
  • As the electronic industry rapidly develops, the heat flux from state-of-the-art electronics increases up to $10^6\;W/m^2$. For this reason, the development of a new cooling technology for high heat flux applications is strongly required. Recently, some cooling technologies using boiling and condensation of working fluid are being adopted to overcome such a technical barrier. In the present study, a smooth boiling surface ($14{\times}14\;mm^2$) was immersed in FC-72 and its vapor was condensed by four different types of condensation surfaces ($30{\times}30\;mm^2$ base). The condensing surfaces were composed of a smooth surface and $1{\times}1\;mm^2$ pin-finned surfaces of 2 mm height with 0.3, 0.5 and 1 mm array spacing. Boiling and condensing characteristics were investigated in detail on their combinations of boiling and condensing surfaces. For a smooth boiling surface the results obtained showed that the pin-finned condensing surface with 1 mm array spacing yielded the best performance and the smooth condensation surface did the worst. Furthermore hysteresis phenomena could be reduced by using enhanced condensing surfaces.

Surface Characteristics and Micro-Scale Friction Property of Natural Surface (식물잎의 표면형상 및 마이크로-스케일에서의 마찰 특성)

  • Yoon, Eui-Sung;Kim, Hong-Joon;Singh R. Arvind;Kim, Jin-Seok
    • Tribology and Lubricants
    • /
    • v.22 no.5
    • /
    • pp.237-242
    • /
    • 2006
  • Surfaces found in nature, including biological surfaces have been providing inspiration to modify/fabricate artificial surfaces as solutions for tribological applications. As an example, the concept of 'lotus-effect' has motivated tribologists world wide to modify/fabricate surfaces for enhanced tribological performance. These was done by creating nano/micro-scale asperities on various surfaces using ion beam milling and ion-beam assisted roughening. In order to understand the attributes of natural surfaces, which are inspirational to tribologists, we characterized the surface of two natural surfaces-Nelumbo nucifera (lotus) and Colocasia esculenta leaves. Further, we evaluated their micro-scale friction property, both in their fresh and dried conditions. The characterization of surfaces was conducted using a confocal microscope and SEM, which involved the evaluation of size and distribution of protuberances. The micro-scale friction property was evaluated using a ball-on-flat type micro-tribo tester, under reciprocating motion. A soda lime glass ball (2 mm diameter) was used in these tests. Tests were conducted at the applied normal load of $3000{\mu}N$, at a sliding speed of 1 mm/sec for a scan length of 3 mm. All experiments were conducted at ambient temperature ($24{\pm}1^{\circ}C}$) and relative humidity ($45{\pm}5%$). It was observed that the friction behaviour of the natural surfaces was influenced by their surface characteristics (morphology and distribution of protuberances) and also by the condition (fresh or dried) in which they were tested.

Nanotribological Characteristics of Plasma Treated Hydrophobic Thin Films on Silicon Surfaces using SPM (SPM을 이용한 Si 표면위에 플라즈마 처리된 소수성 박막의 나노 트라이볼로지적 특성 연구)

  • 윤의성;양승호;공호성;고석근
    • Tribology and Lubricants
    • /
    • v.19 no.2
    • /
    • pp.109-115
    • /
    • 2003
  • Nanotribological characteristics between a Si$_3$N$_4$ AFM tip and hydrophobic thin films were experimentally studied. Tests were performed to measure the nano adhesion and friction in both AFM (atomic force microscope) and LFM (lateral force microscope) modes in various .ranges of normal load. Plasma-modified thin polymeric films were deposited on Si-wafer (100). Results showed that wetting angle of plasma-modified thin polymeric film increased with the treating time, which resulted in the hydrophobic surface and the decrease of adhesion and friction. Nanotribological characteristics of these surfaces were compared with those of other hydrophobic surfaces, such as DLC, OTS and IBAD-Ag coated surfaces. Those of OTS coated surface were superior to those of others, though wetting angle of plasma-modified thin polymeric film is higher.

Investigation of Electro-optical Characteristics in a-TN-LCD on Poly(vinyl)cinnamate Surfaces (Poly(vinyl)cinnamate막을 이용한 a-TN-LCD의 시야각특성에 관한 연구)

  • Seo, Dae-Shik;Park, Ji-Ho;Lee, Chang-Hun;Lee, Bo-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1588-1590
    • /
    • 1997
  • The viewing angle characteristics of amorphous(a)-twisted nematic(TN)-liquid crystal display (LCD) on poly(vinyl)cinnamate (PVC) surfaces with photo polymerrization were investigated. It was found that the threshold voltage increases with increasing the polymerization of PVC surfaces. That the domain size of a-TN-LCD is affected by the surface crystallization with increasing the photo polymerization of the photo-alignment film. We observed that the viewing angle of a-TN-LCD increased with increasing the photo polymerization on PVC surfaces. Finally, we consider that the viewing angle of a-TN-LCD on PVC surfaces is large compared to a-TN-LCD on polyimide(PI) surface.

  • PDF

Investigation of Wetting Characteristics of Polymer Surfaces according to Electron Beam Irradiation (고분자 표면의 전자빔 조사에 따른 젖음특성 고찰)

  • Lee, Hyun Joong;Park, Keun;Kim, Byung Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.1
    • /
    • pp.45-51
    • /
    • 2016
  • The present study uses an electron beam (e-beam) to modify the wetting characteristics of thermoplastic polymer surfaces. A high energy e-beam irradiated various polymer surfaces (PET, PMMA, and PC), with variations in irradiation time and applied current. The water contact angles were measured on the e-beam irradiated surfaces in order to investigate the changes in the surface energy and the relevant wettability. Furthermore, XPS analyses were performed to investigate the chemical composition change in the e-beam irradiated surfaces; the results showed that the hydrophilic groups (C-O) increased after the electron beam irradiation. Also, water collection tests were performed for various polymer samples in order to investigate the effect of the surface energy on the ability of water collection, from which it can be seen that the irradiated surfaces revealed better water-collecting capability than pure polymer surfaces.

A Study on the Characteristics of Graphics on Architectural Surfaces through Artistic Intervention (예술적 개입을 통한 건축표피의 그래픽 특성 연구)

  • Moon, Eun-Mi
    • Korean Institute of Interior Design Journal
    • /
    • v.19 no.3
    • /
    • pp.119-127
    • /
    • 2010
  • This study investigates the examples of artistic intervention especially on the surface of architecture as a meeting place of art and architecture. Artistic intervention demonstrates the possibilities for the meaningful integration of arts into architectural spaces. This study summarizes the characteristics of artistic intervention on the surfaces of architectures as follow; first, the artistic intervention is applied to the broad ranges of designs including public art, architectural design and sign design that establish identities and unique characters to the spaces. Second, the artistic intervention on the surfaces is conducted by the participation of the various fields of artists, i.e. painters, installation artists, graphic designers and landscape designers. The artistic intervention is also conducted by individual collaboration between artists and architects as well as by the forms of public art of art-in-architecture program. Third, the artistic intervention on the surfaces is expressed using the complex combination of images, colors, patterns, and texts. They are applied to enhance the aesthetic and symbolic characters of buildings in public arts, to improve the visual characters of architectural design with graphics, colors, and patterns, as well as to increase communication skills and cognitive effects of sign design with letters and colors on walls and floor surfaces. Fourth, the artistic intervention is also applied on the surfaces to encourage people to communicate historic and symbolic meanings related to the locations and functions. Thus, graphics on the architectural surfaces could provide a public space, with which people could share common feeling on public arts. As a conclusion, the study finds that artistic intervention either as artworks or as elements of architectural design can not only enhance the aesthetic quality of architectural space but also expand the techniques of design representation. In addition, the artistic intervention can contribute to create a new realm of design where artists and architects work together to enrich our surroundings.

Friction and Wear Characteristics of the Micro-dimple Surfaces in Rotary Compressor with Carbon Dioxide as Refrigerants ($CO_2$ 환경하에서 접촉 표면에 적용한 마이크로 딤플 패턴이 마찰 및 마멸에 미치는 영향 연구)

  • Lee, Young-Ze;Jeon, Hong-Gyu;Han, Kyu-Cheol;Choi, Jin-Ho;Kim, Gyu-Man;Cho, Sung-Ouk
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.374-377
    • /
    • 2008
  • Due to the environmental concerns, especially the greenhouse effect and GWP (Global Warming Potential), the carbon dioxide was investigated as an alternative natural refrigerant to replace HFCs (HydroFluoroCarbons) in refrigerator or air conditioning systems. Because new compressor with carbon dioxide is going to be operated under the high pressure, the tribology of sliding surfaces in the compressor becomes very important. To improve of wear resistance in compressor parts, especially rotary type, the friction and wear characteristics of improved sliding surfaces between vane and flange were evaluated in this paper. The method of reformed sliding surface, such as micro-dimple processes, was applied on surfaces in order to improve the tribological characteristics, and their performances were evaluated experimentally. The vane-on-flange type lubricated sliding tests were performed with a high pressure wear tester using carbon dioxide. Test results showed that the reformed surfaces were very effective to reduce the friction and the wear amounts of vane surfaces. The method of improved surfaces showed good tribological properties at vane and flange.