• Title/Summary/Keyword: surfaces

Search Result 9,417, Processing Time 0.038 seconds

Automatic Generation of Quadrilateral Meshes on Trimmed Surfaces (트림 곡면상에서 사각형 요소망의 자동 생성)

  • 김형일;채수원
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.2
    • /
    • pp.153-161
    • /
    • 1999
  • An atomatic mesh generation scheme with unstructured quadrilateral elements on trimmed surfaces has been developed. Trimmed surfaces are often encountered in modeling of structures with complex shapes such as aircrafts, automobile structures, pressure vessels and etc. For unstructured mesh generation with quadrilateral elements, a domain decomposition algorithm employing loop operators has been used. Mesh generation on trimmed surface is performed in three steps. First, trimmed surfaces with holes or cuts are transformed to th largest projection planes in which the meshes are constructed. The constructed meshes are transformed to the u-v parametric plane and then finally to the original 3D surfaces. Th exact locations of holes or cuts in projection planes are determined by the Newton-Raphson method. Sample meshes are constructed to demonstrate the effectiveness of the proposed algorithm.

  • PDF

Wetting Characteristic of Single Droplet Impinging on Hole-Patterned Texture Surfaces (홀 패턴 텍스쳐 표면에서 충돌하는 단일 액적의 젖음 특성)

  • Moon, Joo Hyun;Lee, Sangmin;Jung, Jung-Yeul;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.20 no.3
    • /
    • pp.181-186
    • /
    • 2015
  • This study presents the dynamic wetting characteristics of an impact droplet on hole-patterned textured surfaces. The flat surfaces were manufactured by a drilling machine to generate the micro-order holes, leading to make the surface hydrophobic. Other flat surfaces were fabricated by the anodizing technique to make hydrophilic texture surfaces with a nanometer order. For hydrophilic and hydrophobic textured surfaces with similar texture area fractions, the impinging droplet experiments were conducted and compared with flat surface cases. As results, an anodized textured surface decreases apparent equilibrium contact angle and increases contact diameters, because of increase in contact area and surface energy. This is attributed to more penetration inside holes from larger capillary pressure on nanometer-order holes. On the other hand, temporal evolution of the contact diameter is smaller for the hydrophobic textured surface from less penetration on the micro-order holes.

Fabrication of Super Water Repellent Surfaces by Vacuum Plasma (진공 플라즈마 처리를 통한 초소수성 표면 제작 및 특성 평가)

  • Rha, Jong-Joo;Jeong, Yong-Soo;Kim, Wan-Doo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.143-147
    • /
    • 2008
  • Super-hydrophobic surfaces showed that contact angle of water was higher than 140 degrees. That surface could be made several methods such as Carbon nano tubes grown vertically, PDMS asperities arrays, hydrophobic fractal surfaces, and self assembled monolayers coated by CVD and so on. However, we fabricated super-hydrophobic surfaces with plasma treatments which were very cost efficient processes. Their surfaces were characterized by static contact angles, advancing, receding, and stability against UV irradiation. Optimal surfaces showed static contact angles were higher than 150 degrees. Super-hydrophobic property was remained after UV irradiation for one week.

Surface Fairing with Boundary Continuity Based on the Wavelet Transform

  • Cho, Joo-Hyung;Kim, Tae-Wan;Lee, Kun-Woo
    • ETRI Journal
    • /
    • v.23 no.2
    • /
    • pp.85-95
    • /
    • 2001
  • The surface modeling capability of CAD systems is widely used to design products bounded by free form surfaces and curves. However, the surfaces or curves generated by popular data fitting methods usually have shape imperfections such as wiggles. Thus, fairing operations are required to remove the wiggles, which makes the surfaces or curves smooth. This paper proposes a new method based on the wavelet transform for fairing the surfaces or curves while preserving the continuity with adjacent surfaces or curves. The wavelet transform gives a hierarchical perspective of the surfaces and the curves, which can be decomposed into the overall sweep and details, i.e., local deviations from sweep like the wiggles. The proposed fairing method provides a similar effect on the mathematical surface as that of the grinding operation using sandpaper on the physical surface.

  • PDF

Odd-Even Effects of the Anchoring Strength for Nematic Liquid Crystal on Rubbed Polyimide LB Surfaces (러빙처리된 폴리이미드막 LB막에 있어서 네마틱액정의 결합강도의 홀수짝수 효과)

  • Seo, Dae-Shik
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1453-1455
    • /
    • 1996
  • The odd-even effect of the alkyl chain length of rubbed polyimide Langmuir-Blodgett (LB) surfaces on the extrapolation length of 5CB has been successfully evaluated for the first time by measuring polar anchoring strength. The extrapolation length of 5CB for rubbed PI-LB surfaces with even-numbers is small compared with odd-numbers for alkyl chain lengths of greater than 7 carbons. The extrapolation length of 5CB on rubbed PI-LB surfaces with odd-numbers increases gradually as the temperature increases but tends to diverge near the clearing temperature (Tc=$35.3^{\circ}C$). The extrapolation length diverges because of rapidly decreasing surface order near $T_c$. We suggest that the polar anchoring strength on rubbed PI-LB surfaces with even-number is strong because of relatively high surface ordering caused by more crystalline surfaces. Finally, we conclude that the odd-even effects of the polar anchoring strength in NLCs are strongly related to the character of the polymer and observed clearly for long alkyl chain lengths.

  • PDF

CHARACTERIXATION OF PLASMA ION IMPLANTED SURFACES USING TIME-OF-FLIGHT SECONDARY ION MASS SPECTROMATRY

  • Lee, Yeon-Hee;Han, Seung-Hee;Lee, Jung-Hye;Yoon, Jung-Hyeon
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.880-883
    • /
    • 1996
  • Plasma Source Ion Implantation (PSII) technique was used for the hydrophilization or hydrophobization of polymer surfaces. Polymers were modified with different plasma gases such as oxygen, nitrogen, argon, and tetrafluoromethane, and for varying lengths of treatment time. Plasma ion treatment of oxygen, nitrogen, argon and their mixtures increased significantly the hydrophilic properties of polymer surfaces. More hydrophobic surfaces of polymers were formed after the treatment with tetrafluoromethane. A study of plasma source ion implanted polymers was performed using contact angle measurements and Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS). The TOF-SIMS spectra and depth profile were used to obtain the information about the treated surfaces of polymers. The permanence of this technique could be evaluated with respect to ageing time. The surfaces treated with PSII gave better stability than other surface modification methods.

  • PDF

Artificial Adhesive Surfaces Mimicking Gecko Setae: Novel Approaches in Surface Engineering

  • Singh, R. Arvind;Yoon, Eui-Sung
    • KSTLE International Journal
    • /
    • v.9 no.1_2
    • /
    • pp.13-16
    • /
    • 2008
  • Surface Engineering is a field closely related to Tribology. Surfaces are engineered to reduce adhesion, friction and wear between moving components in engineering applications. On the contrary, it is also necessary to have high adhesion between surfaces so as to hold/stick surfaces together. In this context, surface engineering plays an important role. In recent times, scientists are drawing inspiration from nature to create effective artificial adhesive surfaces. This article provides some examples of novel surface engineering approaches conducted by various research groups worldwide that have significantly contributed in the creation of bio-inspired artificial adhesive surfaces.

Bioinspired Metal Surfaces by Plasma Treatment

  • Yu, Ui-Seon;Go, Tae-Jun;O, Gyu-Hwan;Mun, Myeong-Un
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.97-97
    • /
    • 2013
  • The exterior structures of natural organisms have continuously evolved by controlling wettability, such as the Namib Desert beetle, whose back has hydrophilic/hydrophobic contrast for water harvesting by mist condensation in dry desert environments, and some plant leaves that have hierarchical micro/nanostructures to collect or repel liquid water. In this work, we have provided a method for wettability contrast on metals by both nano-flake or needle patterns and tuning of the surface energy. Metals including steel alloys and aluminum were provided with hierarchical micro/nanostructures of metaloxides induced by fluorination and a subsequent catalytic reaction of fluorine ions on metal surfaces in water with various ranges from room to boiling temperature of water. Then, a hydrophobic material was deposited on the structured surfaces, rendering superhydrophobicity. Plasma oxidization induces the formation of superhydrophilic surfaces on selective regions surrounded by superhydrophobic surfaces. We show that wettability contrast surfaces align liquid water within patterned hydrophilic regions during the condensation process. Furthermore, this method could have a greater potential to align other liquids or living cells.

  • PDF

A STUDY ON THE ROUGHNESS OF THE RESTORATIVE COMPOSITE RESIN (수복용(修複用) 복합(復合)레진의 표면조도(表面粗度)에 관(關)한 연구(硏究))

  • Lee, Myung-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.13 no.2
    • /
    • pp.207-220
    • /
    • 1988
  • The purpose of this study was to measure roughness on the polished surfaces of composite resin, and was to observe the polished surfaces under Scanning Electron Microscope. The surface roughness tester (Surfcom 700A Semitsu Profilometer Tokyo. Japan) was used to measure roughness of polished surfaces. In this study, 4 brands of composite resin were examined, Pyrofil bond anterior Bell-Feel anterior Clearfil F II and Microrest A.P. White point, Silicone point, Super snap, and Sof-Lex medium disc as cutting instrument, and celluloid matrix were used. The results obtained were as follows. 1) The celluloid matrix produced the smoothest surfaces. 2) Microrest composite resin had smoother surface than any other composite resins after polishing. 3) The values of surface roughness made by White point, Silicon point and Super snap were similar. 4) The surfaces made by Sof-Lex medium disc was smoother than the surfaces made by any other polishing instruments.

  • PDF

EFFICIENT COMPUTATION OF THE ACCELERATION OF THE CONTACT POINT BETWEEN ROTATING SURFACES AND APPLICATION TO CAM-FOLLOWER MECHANISM

  • LEE K.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.115-120
    • /
    • 2006
  • On a rotating contact surface of arbitrary shape, the relative velocity of the contact point sliding between the surfaces is computed with the basic geometries of the rotating surfaces, and the acceleration of the contact point between the contact surfaces is computed by using the relative velocity of the contact point. Thus the equation for the acceleration constraint between the contact surfaces in muitibody dynamics is not coupled with the parameters such as the relative velocity of the contact point. In case of the kinematic analysis, the acceleration of the contact point on any specific instant may also be efficiently computed by the present technique because the whole displacement of a full cycle need not be interpolated. Employing a cam-follower mechanism as a verification model, the acceleration of the contact point computed by the present technique is compared with that computed by differentiating the displacement interpolated with a large number of nodal points.