• 제목/요약/키워드: surface-coated

검색결과 3,088건 처리시간 0.028초

표면 코팅 입자에 의한 석탄화력 발전용 보일러 파울링 수치적 연구 (Computational Study of Fouling Deposits Due to Surface-Coated Particles in Coal-Fired Power Utility Boilers)

  • 이병은;유갑종;신세현;권순범
    • 대한기계학회논문집B
    • /
    • 제26권3호
    • /
    • pp.474-481
    • /
    • 2002
  • Fouling deposits due to surface-coated particles have been calculated using CFD techniques. The sticking probabilities of the surface-coated particles are also evaluated on the basis of an energy balance. The sticking probabilities of the deposit surface are also included in the prediction of the deposition occurring through the multiple impaction of particles with the deposit surface. The sticking probability of an impacting particle is expressed in terms of such parameters as particle viscosity, surface tension, impact velocity, impact angle and the thickness of the sticky layer on a particle. Particulate behavior around a tube in cross flow was studied using the Lagrangian approach. Three important parameters i.e. impact velocity, impact angle, and particulate concentration, were used in the prediction of deposition rate. The computational predictions were found to be in good agreement with the experimental data.

In vitro study of Streptococcus mutans adhesion on composite resin coated with three surface sealants

  • Kim, Da Hye;Kwon, Tae-Yub
    • Restorative Dentistry and Endodontics
    • /
    • 제42권1호
    • /
    • pp.39-47
    • /
    • 2017
  • Objectives: Although the coating of surface sealants to dental composite resin may potentially reduce bacterial adhesion, there seems to be little information regarding this issue. This preliminary in vitro study investigated the adhesion of Streptococcus mutans (S. mutans) on the dental composite resins coated with three commercial surface sealants. Materials and Methods: Composite resin (Filtek Z250) discs (8 mm in diameter, 1 mm in thickness) were fabricated in a mold covered with a Mylar strip (control). In group PoGo, the surfaces were polished with PoGo. In groups PS, OG, and FP, the surfaces polished with PoGo were coated with the corresponding surface sealants (PermaSeal, PS; OptiGuard, OG; Fortify Plus, FP). The surfaces of the materials and S. mutans cells were characterized by various methods. S. mutans adhesion to the surfaces was quantitatively evaluated using flow cytometry (n = 9). Results: Group OG achieved the lowest water contact angle among all groups tested (p < 0.001). The cell surface of S. mutans tested showed hydrophobic characteristics. Group PoGo exhibited the greatest bacterial adhesion among all groups tested (p < 0.001). The sealant-coated groups showed statistically similar (groups PS and FP, p > 0.05) or significantly lower (group OG, p < 0.001) bacterial adhesion when compared with the control group. Conclusions: The application of the surface sealants significantly reduced S. mutans adhesion to the composite resin polished with the PoGo.

SCM415강의 원형포켓 가공시 표면 거칠기에 관한 연구 (A Study on Surface Roughness in Circular Pocket Machining of SCM415 Steel)

  • 최철웅
    • 한국기계가공학회지
    • /
    • 제18권7호
    • /
    • pp.77-82
    • /
    • 2019
  • In this study, we study the change of surface roughness during cutting machining by changing the cutting conditions such as feed rate and spindle velocity with chromium molybdenum steel (SCM415) material and TiCN and TiAlN coated end mill tools. The surface roughness value of the test specimen for SCM415, was found to be 3,000 rpm in TiCN coated end mill and $0.634{\mu}m$ in surface roughness at a feed rate of 100 mm/min. In the TiAlN coated end mill, 300 mm/min, the surface roughness was the best at $0.699{\mu}m$. The overall average surface roughness of each coating tool was better than that of TiAlN.

ZrN 및 TiN 코팅된 치과교정 용 미니나사의 표면특성과 전기화학적 거동 (Surface Characteristics and Electrochemical Behaviors of TiN and ZrN Coated Orthodontic Mini-screw)

  • 김신영;문영필;박근형;조호형;김원기;손미경;최한철
    • 한국표면공학회지
    • /
    • 제41권5호
    • /
    • pp.232-239
    • /
    • 2008
  • The dental orthodontic mini-screw requires good mechanical properties and high corrosion resistance for implantation in the bone. The purpose of this study was to investigate the electrochemical characteristics of TiN and ZrN coated orthodontic mini-screws, mini-screws were used for experiment. Ion plating was carried out for mini-screw using Ti and Zr coating materials with nitrogen gas. Ion plated surface of each specimen w as o bserved with f ield emission scanning e lectron microscopy ( FE-SEM), e nergy dispersive x-ray spectroscopy (EDX), and electrochemical tester. The surface of TiN and ZrN coated mini-screw were more smooth than that of other kinds of non-coated mini-screw due to dercrease of machined defects. The corrosion current density of the TiN and ZrN coated mini-screw decreased compared to non-coated sample. The corrosion potential of TiN and ZrN coated mini-screw were higher than that of non-coated mini-screw in 0.9% NaCl solution. The pitting corrosion resistance increased in the order of ZrN coated, TiN coated and non-coated wire. Pitting potential of ZrN coated mini-screw was the highest in the other specimens.

음극 아크 이온플레이팅법으로 코팅된 TiN 박막의 수명결정요인에 관한 연구 (A study on life decision factors of TiN films coated by Cathode Arc ion Plating Method)

  • 최석우;백영남
    • 한국표면공학회지
    • /
    • 제33권4호
    • /
    • pp.222-228
    • /
    • 2000
  • The life time of cutting tool was studied in the relation with the properties of TiN coating tools. The purpose of this study is to compare the cutting conditions of the TiN coated tools with those of the non-coated tools and to find out the optimal cutting condition of the TiN coated tool. The coated tools were prepared by the sputtering process at $4$\times$10^{-3}$Torr. When the cutting speed is increased 22.2% from 90m/min, the limited life of coating bite was decreased by 60.61%, but non-coating bite was decreased by 64.05%. In the tool lifetime equation of the coated tools "a"(exponent of feed rate) was not much changed in comparison with that of the non-coated tools but "n" (exponent of tool′s life) was increased by 9.3% and "b" (exponent of cutting depth) was increased by 2.4%. It was thought to be that TiN coated tools was used for higher cutting speed than non-coated tools to improve the lifetime of the coated tools.

  • PDF

수용성 흑색 착색제의 개발과 이의 응용 (The Development of Water-Soluble Black Coloring Agent and Its Application)

  • 김무길;정병호;문명준;김상수
    • 열처리공학회지
    • /
    • 제15권5호
    • /
    • pp.213-218
    • /
    • 2002
  • In order to develop the economic and environmental water-soluble black coloring agent, some adequate chemical mixtures were mixed and this solution was applied to coat quenched and tempered 51B20 steel bolt. Some basic properties of the solution and characteristics of the coated film in addition to the corrosion resistance were investigated. The developed 100 kg of water-soluble black coloring agent solution was a chemical mixture consisted of 10 kg of aqueous coloring agent, 40 kg of surface active agent, 0.3 kg of anti-foam agent and $50{\ell}$ of water. The coated film of the bolt was composed of hard layer of about $2{\mu}m$ and the disbondable soft layer of about $4{\mu}m$ above the hard layer. Many surface active agents peaks and a few hydrophilic peaks were observed in the coated film. Surface roughness value of the coated bolt was lower than that of the non-coated bolt. Corrosion resistance of the coated bolt considerably improved and also relatively showed a good polarization resistance at test condition of $40^{\circ}C$ colorizing temperature and 5% the solution concentration in 3% NaCl anodic polarization test. Initial appearance time of the surface rust was greatly retarded owing to the coated film in salt spray test.

건조 상태에 따른 CNT 및 ITO로 코팅된 PET 투명전극의 표면 조절 및 내구성 평가 (Surface control and durability evaluation of CNT and ITO coated PET transparent electrode with different dry conditions)

  • 권동준;왕작가;구가영;박종만
    • Composites Research
    • /
    • 제24권5호
    • /
    • pp.17-22
    • /
    • 2011
  • 최근 투명전극으로 주로 사용되고 있는 ITO 재료를 대체하가 위해 CNT를 이용한 투명전극의 활용 연구가 활발히 진행되고 있다. 본 연구에서는 건조온도에 따라 CNT와 ITO의 응집이 일어나는 정도가 달라진다는 점을 이용하여 표면을 조절하여 CNT 및 ITO가 코팅된 폴리에틸렌 테레프탈레이트 (PET)를 제조하였다. CNT를 ITO를 대신할 투명전극으로의 활용 가능성을 평가하면서, 표면의 물성 변화를 유도 하기 위해 코팅 후 건조온도를 $20^{\circ}C$, $80^{\circ}C$, 그리고 $120^{\circ}C$ 3단계로 나누어 표면을 관찰하였다. 전기저항측정법을 활용하여 재료의 내구성 및 전기적 물성을 평가함으로써 제조한 투명전극의 특성을 평가하였다. 전자현미경을 이용하여 건조온도에 따른 표면 변화를 관찰하였고, UV-스펙트럼을 통해 건조온도가 증가함에 따라 투과도가 변화하는 것을 확인하였다. 나노입자의 코팅 표면 조절에 따른 전기적 물성 변화를 확인하기 위해 순환전압전류법을 이용 하였다. CNT 코팅 표면의 내구성이 ITO 코팅 표면의 내구성보다 우수함을 알았다. 그리고, 건조온도가 높을수록 나노입자들의 응집이 크게 증가 하여 내구성이 우수한 코팅 표면을 만들며, 이에 따른 전기적 물성의 향상도 확인하였다.

Surface Treatment of LiFePo4 Cathode Material for Lithium Secondary Battery

  • Son, Jong-Tae
    • 전기화학회지
    • /
    • 제13권4호
    • /
    • pp.246-250
    • /
    • 2010
  • In this study, nano-crystallized $Al_2O_3$ was coated on the surface of $LiFePO_4$ powders via a novel dry coating method. The influence of coated $LiFePO_4$ upon electrochemical behavior was discussed. Surface morphology characterization was achieved by transmission electron microscopy (TEM), clearly showing nano-crystallized $Al_2O_3$ on $LiFePO_4$ surfaces. Furthermore, it revealed that the $Al_2O_3$-coated $LiFePO_4$ cathode exhibited a distinct surface morphology. It was also found that the $Al_2O_3$ coating reduces capacity fading especially at high charge/discharge rates. Results from the cyclic voltammogram measurements (2.5-4.2 V) showed a significant decrease in both interfacial resistance and cathode polarization. This behavior implies that $Al_2O_3$ can prevent structural change of $LiFePO_4$ or reaction with the electrolyte on cycling. In addition, the $Al_2O_3$ coated $LiFePO_4$ compound showed highly improved area-specific impedance (ASI), an important measure of battery performance. From the correlation between these characteristics of bare and coated $LiFePO_4$, the role of $Al_2O_3$ coating played on the electrochemical performance of $LiFePO_4$ was probed.

Polypyrrole-Coated Woven Fabric as a Flexible Surface-Heating Element

  • Lee, Jun-Young;Park, Dong-Won;Lim, Jeong-Ok
    • Macromolecular Research
    • /
    • 제11권6호
    • /
    • pp.481-487
    • /
    • 2003
  • Polypyrrole (PPy) was coated sequentially by chemical and electrochemical methods on a woven fabric, giving rise to a fabric having high electrical conductivity. We investigated the effects of the preparation conditions on the various properties of the resulting fabric. The PPy-coated fabric with optimum properties was obtained when it was prepared sequentially by chemical polymerization at the elevated temperature of 100$^{\circ}C$ under a pressure of 0.9 kgf/$\textrm{cm}^2$ and then electrochemical polymerization with a 3.06 mA/$\textrm{cm}^2$ current density at 25 $^{\circ}C$ for 2 hrs with the separator plate. The surface resistivity of the resulting fabric was as low as 5 Ω/$\square$ .The PPy-coated fabric prepared under the optimum conditions showed practically applicable heat generating property. When electrical power was supplied to the fabric using a commercial battery for a mobile phone (3.6 V, LGLl-AHM), the temperature of the fabric increased very quickly from room temperature to ca. 55 $^{\circ}C$ within 2 min and was maintained for ca. 80 min at that temperature. The heat generating property of the fabric was extremely stable, exhibiting similar behavior over 10 repeated cycles. Therefore, we suggest that the PPy-coated fabric in this study may be practically useful for many applications, including flexible, portable surface-heating elements for medical or other applications.

Control of Surface Chemistry and Electrochemical Performance of Carbon-coated Silicon Anode Using Silane-based Self-Assembly for Rechargeable Lithium Batteries

  • Choi, Hyun;Nguyen, Cao Cuong;Song, Seung-Wan
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권9호
    • /
    • pp.2519-2526
    • /
    • 2010
  • Silane-based self-assembly was employed for the surface modification of carbon-coated Si electrodes and their surface chemistry and electrochemical performance in battery electrolyte depending on the molecular structure of silanes was studied. IR spectroscopic analyses revealed that siloxane formed from silane-based self-assembly possessed Si-O-Si network on the electrode surface and high surface coverage siloxane induced the formation of a stable solid-electrolyte interphase (SEI) layer that was mainly composed of organic compounds with alkyl and carboxylate metal salt functionalities, and PF-containing inorganic species. Scanning electron microscopy imaging showed that particle cracking were effectively reduced on the carbon-coated Si when having high coverage siloxane and thickened SEI layer, delivering > 1480 mAh/g over 200 cycles with enhanced capacity retention 74% of the maximum discharge capacity, in contrast to a rapid capacity fade with low coverage siloxane.