• Title/Summary/Keyword: surface zeta-potential

Search Result 260, Processing Time 0.027 seconds

Effect of Molecular Weight of Polyethylenimine on the Transfection of Plasmid DNA (Plasmid DNA의 세포전이에 대한 PEI 분자량의 영향)

  • Lee, Kyung-Man;Kim, In-Sook;Lee, Yong-Bok;Shin, Sang-Chul;Oh, In-Joon
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.1
    • /
    • pp.17-23
    • /
    • 2005
  • Polyethylenimine (PEI) has been used as cationic polymers for efficient gene transfer without the need for endosomolytic agents. Various kinds of PEIs with different molecular weight were tested in order to investigate the effects of the molecular weight of PEI on the transfection efficiency and cell cytotoxicity. The ${\beta}-galactosidase$ expression $(pCMV-{\beta}-gal)$ plasmid was used as a model DNA. Complex formation between PEI and pDNA was assessed by 1% agarose gel electrophoresis method. Particle size and zeta-potential of complexes were determined by electrophoretic light scattering spectrometer. In vitro transfection efficiency was assayed by measuring ${\beta}-galactosidase$ activity. Cell cytotoxicity was determined by MTT assay. Particle sizes of the complexes became smaller on increasing molecular weights of PEI and N/P ratios. Surface potential of complexes was increased as the molecular weight of PEI increased. Transfection efficiency of $pCMV-{\beta}-ga1$ on the HEK 293 cells was greatest with PEI 25 K system but having the lowest cell viability. PEI with high molecular weight showed higher transfection efficiency and cell viability than PEI with low molecular weight.

A Preparation and Characteristics of Functional rchitecture Materials Made frm Non-metallic Minerals (비금속광물 분체의 기능성 건축소재화 특성)

  • 김병곤;최상근;박종력;전호석
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.811-817
    • /
    • 2003
  • Recently, application fields of non-metallic minerals by utilizing their structure properties are broadening. Especially, layered minerals have not only excellent shielding or covering ability but also absorbing and storing characteristics of chemical elements between a layers. We considered about the above mentioned characteristics and added functional substances onto their surfaces for the preparation of new environmentally friendly functional materials. In this study, natural graphite and sericite were mainly used to produce for the new environmentally friendly functional building materials. Graphite surfaces were modified with a surfactant (Alkyl Benzyle Demethyle Ammonium Chloride) for anti-bacillus and penicillium. Surface modification mechanism are that primary adsorption by differential zeta potential between graphite and ABDM and secondary adsorption by interaction between surfactant chains take place. Surfactant layers were fully formed and it was expected up to 99.7% up the efficiency of anti-bacillus and penicillium. Also the prepared functional samples have a effect to improve a various efficiency such as electromagnetic wave shield(up to 95%), deodorization(up to 80%), heat storage(5%) etc.

COLLOIDAL PROPERTIES OF HOLLOW LATICES AND THEIR ROLES IN CONTROLLING COLORIMETRIC PARAMETERS OF COATED PAPER SURFACE

  • Hitomi HAMADA;Yoko SAITO
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.04b
    • /
    • pp.309-314
    • /
    • 1999
  • With a view to seek the influence of hollow sphere pigments of latex upon the printed color on coated paper surface, the hollow sphere pigments were compared with filled ones in a variety of experimental approaches. Colloidal properties of latices were determined by measuring zeta potential and particle size distribution. For the amphoteric filled sphere pigment of latex, the polarity was reversed from the negative side to the positive side with decreasing pH. An extraordinarily high peak in the particle size distribution of the amphoteric filled evidenced aggregation between latex particles near the isoelectric point, depending on the electrolyte concentration and pH of the suspending medium. Coated papers containing the hollow sphere pigment in their coating improved optical properties like gloss and brightness. Optical parameters solely of the coating could account for this finding. An equation derived from the Kubelka-Munk equation calculated them fro twice measurements of reflectance of a coated paper over two substrates of different reflectances. This method permitted to predict brightness of coated paper of which coat weight would be different fro the actual one. The colorimetric parameters of solid-printed surfaces of the coated papers closely related to optical and structural properties of the coated papers. The color of the printed surfaces was dominated by the brightness and the smoothness of the coated papers. The hollow sphere pigments were proved to improve optical properties of coated paper and to control minutely colorimetric parameters of printed surfaces.

Preparation of ZnO Thin Film by Electrophoretic Deposition(EPD)

  • Jun, Byung-Sei
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.78-83
    • /
    • 2012
  • The electrophoretic deposition(EPD) of ZnO nano-sized colloids is investigated by changing the colloid number concentration, applied force, and deposition time. The change of the colloid size in a suspension was examined by the different colloid number concentrations (N = $3.98{\times}10^{15}$, N = $3.98{\times}10^{14}$, and N = $3.98{\times}10^{13}$) with an increase of the deposition time and applied forces. Deposition behavior was investigated by changing the applied fields (from DC 5 V to 50 V) and the deposition time (5 min to 25 min). The surface microstructures of the as-deposited films were investigated by SEM. The dried films were sintered from $850^{\circ}C$ to $1,050^{\circ}C$ for 2 h and then the microstructures were also explored by SEM. The agglomeration rate was enhanced by increasing the colloid number concentration of colloids. Colloid number concentration in a suspension must be rapidly decreased at higher values of the electric field. ZnO nano-sized colloids had the highest zeta potential value of over -28 mV in methanol. A homogeneous microstructure was obtained at colloid number concentration of N = $3.98{\times}10^{13}$, applied DC field of 5 V/cm and 15 min of deposition time at an electrode distance of 1.5 cm. Under these conditions, the deposited films were sintered at $850^{\circ}C$ and $1,050^{\circ}C$ for 2 h. The results show a typical pore-free surface morphology of a uniform thickness of 400 nm under these experimental conditions.

Wall charge effects on structural properties of a coarse-grained FENE polyelectrolyte confined in slit nanochannels by Brownian dynamics simulation

  • Jeon, Jong-Gu;Chun, Myung-Suk
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.2
    • /
    • pp.51-59
    • /
    • 2007
  • A polyelectrolyte chain confined in a slit nanochannel exhibits a structural transition from the one in free space. In this paper, the effect of the long-range electrostatic interactions between the xanthan polyelectrolyte and the slit wall on the confined xanthan conformation is investigated via the Brownian dynamics simulation. A neutral and two negatively charged surfaces of polydimethylsiloxane (PDMS) and glass are combined to make four kinds of slit channels with different charge characteristics: i) neutral-neutral, ii) glass-glass, iii) neutral-PDMS and iv) neutral-glass walls. Their walls are characterized by uniform surface charge densities determined from experimental data of zeta potential. Both the nonmonotonic chain size variation and the loss of long-range bond vector correlation, previously observed under confinement in the PDMS-PDMS slit, are also found in the neutral slit, demonstrating the nonelectrostatic origin of such crossover behaviors. As expected, the effect of wall charges is negligible at sufficiently high medium ionic strength of 100mM but it becomes significant in the opposite limit of 0.01mM. In the latter case, the high charge density of glass walls strengthens the effective confinement of a negatively charged polyelectrolyte and produces a xanthan structure comparable to that confined in a much narrower neutral slit. The obtained structural data suggest the possibility of controlling the structure of confined polyelectrolytes by the modification of surface charge characteristics of micro/nanofluidic devices in combination with the adjustment of the medium ionic strength.

Study on $TiO_2$ nanoparticle for Photoelectrode in Dye-sensitized Solar Cell (염료감응형 태양전지의 광전극 적용을 위한 $TiO_2$ nanoparticle 특성 분석)

  • Jo, Seulki;Lee, Kyungjoo;Song, Sangwoo;Park, Jaeho;Moon, Byungmoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.57.2-57.2
    • /
    • 2011
  • Dye-sensitized solar cells (DSSC) have recently been developed as a cost-effective photovoltaic system due to their low-cost materials and facile processing. The production of DSSC involves chemical and thermal processes but no vacuum is involved. Therefore, DSSC can be fabricated without using expensive equipment. The use of dyes and nanocrystalline $TiO_2$ is one of the most promising approaches to realize both high performance and low cost. The efficiency of the DSSC changes consequently in the particle size, morphology, crystallization and surface state of the $TiO_2$. Nanocrystalline $TiO_2$ materials have been widely used as a photo catalyst and an electron collector in DSSC. Front electrode in DSSC are required to have an extremely high porosity and surface area such that the dyes can be sufficiently adsorbed and be electronically interconnected, resulting in the efficient generation of photocurrent within cells. In this study, DSSC were fabricated by an screen printing for the $TiO_2$ thin film. $TiO_2$ nanoparticles characterized by X-ray diffractometer (XRD) and scanning electron microscope (SEM) and scanning auger microscopy (SAM) and zeta potential and electrochemical impedance spectroscopy(EIS).In addition, DSSC module was modeled and simulated using the SILVACO TCAD software program. Improve the efficiency of DSSC, the effect of $TiO_2$ thin film thickness and $TiO_2$ nanoparticle size was investigated by SILVACO TCAD software program.

  • PDF

Synthesis and Characterization of Mica Coated with Zinc Oxide Nanoparticles (산화 아연 나노 입자로 도포된 마이카의 합성 및 특성 규명)

  • Kil, Hyun Suk;Kim, Young Ho;Park, Minyoung;Rhee, Seog Woo
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.271-278
    • /
    • 2012
  • In this work, we have prepared the nanocomposite by the reaction of mica and zinc oxide, and investigated the application of nanocomposite to UV protecting creams. Mica treated with 3-aminopropyltrimethoxysilane (APTMS) reacted with 1,4-phenylenediisothiocyanate (PDC) to give -N=C=S functionalized surface, which was further reacted with zinc oxides coated with APTMS to give mica-zinc oxide nanocomposites. The composites were characterized by EA, EDS, TGA, SEM, zeta potential measurement, powder XRD, and DRS UV/Vis analyses. Finally, we measured transmittances of ultraviolet protection creams manufactured by using mica composite covered with zinc oxides in the range of 280~400 nm. The nanocomposites developed in this work might be applicable as inorganic hybrid materials for UV protecting creams.

Effect of Poly(vinyl alcohol) and Poly(vinyl alcohol) Mono Thiol on the Stability Properties of Poly(vinyl acetate) Latex (폴리비닐알코올과 폴리비닐알코올모노티올이 폴리초산비닐 라텍스의 안정성에 미치는 영향)

  • 이서용;박이순
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.579-588
    • /
    • 2000
  • The effects of protective colloids on the colloid stability of poly(vinyl acetate) (PVAc) latex was investigated. The stability of PVAc latex in reactive poly(vinyl alcohol) mono thiol (PVALT) (DP=1080) having 78.4% saponification value was better than poly (vinyl alcohol)(PVA) (DP=1100) having 81.6% saponification value. The colloidal stability of PVAc latex particles improved drastically with increase of the reactive PVALT. The particle surface morphology of PVAc latex was examined by transmission electron microscopy (TEM). It was shown that particle size of 1ha latexes decreased with increasing reactive PVALT concentration. Therefore, the stabilities of latex for reactive PVALT protective colloid was superior to that of PVA ones. This result is due to the introduction of many thiol groups that induce chemical bonds at PVAc latexes surface, so that the formation of PVALT-b-PVAc block copolymer via the reaction of PVAc with reactive PVALT. In addition, zeta potential of the PVAc latexes decreased with increasing sodium carbonate concentration.

  • PDF

Surface Modification of High Energetic Materials by Molecular Self-assembly (자기조립법을 이용한 고에너지물질의 표면개질 연구)

  • Kim, Ja-Young;Jeong, WonBok;Shin, Chae-Ho;Kim, Jin-Seok;Lee, Keundeuk;Lee, Kibong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.18-23
    • /
    • 2016
  • Self-assembly of organic molecules is formed spontaneously on surfaces by electrostatic interaction with substrate. This research has shown that the self-assembly improves safety and handling tractability of high-energetic materials (HEMs). According to the recent study, control of the specific crystal size for reducing the internal defects is mightily important, because the internal defects are a factor in unstability of HEMs. In turn, we performed self-assembly of organic molecules and HEMs by using nano-sized HEMs, which were produced by drowing-out or milling/crystallization. Surface modification efficiency was decided by size distribution, zeta-potential, friction sensitivity and electrostatic charge.

Preparation and Antibacterial Properties of the Planar-Type ZnO Powder Coated with Ag or CuO (Ag 또는 CuO를 코팅한 평판형 ZnO 분말의 합성 및 항균성 평가)

  • Hong, Da-Hee;Gwack, Ji-Yoo;Jeon, Deock-Seong;Jo, Dong-Hyeon;Lee, Gun-Sub;Lee, Jung-Hwan;Lee, Hee-Chul
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.3
    • /
    • pp.144-151
    • /
    • 2021
  • In the present work, planar-type ZnO powder of [0001] plane with a high aspect ratio range of 20:1 to 50:1 was synthesized. Ag or CuO could be coated on the planar-type ZnO powder by wet methods such as centrifugation or ball milling. During the coating, the average size of the powder was slightly increased while maintaining the shape and XRD pattern of ZnO. When Ag or CuO was coated, the absolute value of the zeta potential, as well as the concentration of oxygen vacancy, was increased. Ag or CuO coated planar-type ZnO power exhibited excellent antibacterial performance, which seems to be related to their high electrostatic attraction force. They could be made into a masterbatch by mixing with ABS resin, and their applicability to antibacterial substances was confirmed by manufacturing the caps of a keyboard.