• Title/Summary/Keyword: surface zeta-potential

Search Result 260, Processing Time 0.025 seconds

Evaluation of Dewatering of Cellulose Nanofibrils Suspension and Effect of Cationic Polyelectrolyte Addition on Dewatering (셀룰로오스 나노피브릴 현탁액의 탈수성 평가 및 양이온성 고분자전해질 투입의 영향)

  • Ryu, Jaeho Ryu;Sim, Kyujeong;Youn, Hye Jung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.6
    • /
    • pp.78-86
    • /
    • 2014
  • Since cellulose nanofibrils (CNF) has large specific surface area and high water holding capacity, it is very difficult task to remove water from the CNF suspension. However, dewatering of CNF suspension is a prerequisite of following processes such as mat forming and drying for the application of CNF. In this study, we evaluated the drainage of cellulose fibers suspension under vacuum and pressure conditions depending on the number of grinding passes. Also, the effect of the addition of cationic polyelectrolyte on dewatering ability of CNF suspension was investigated. Regardless of dewatering condition, the total drained water amount as well as the drainage rate were decreased with an increase in the number of grinding passes. Pressure dewatering equipment enables us to prepare wet CNF mat with relatively higher grammage. The cationic polyelectrolytes improved the dewatering ability of CNF suspension by controlling the zeta potential of CNF. The fast drainage was obtained when CNF suspension had around neutral zeta potential.

Effect of Co-initiator on the Size Distribution of the Stable Poly(Styrene-co-Divinylbenzene) Microspheres in Acetone/Water Mixture

  • Choi, Jin-Young;Lee, Kang-Seok;Lee, Byung-Hyung;Choe, Soon-Ja
    • Macromolecular Research
    • /
    • v.17 no.7
    • /
    • pp.483-490
    • /
    • 2009
  • Stable poly(styrene-co-divinylbenzene) [P(St-co-DVB)] micro spheres with narrow size distribution were synthesized in the presence of 2,2'-azobis(2,4-dimethyl valeronitrile) (V-65) and co-initiator in an acetone/water mixture in the precipitation polymerization at $53^{\circ}C$ for 24 h. Potassium peroxodisulfate (KPS), ammonium peroxodisulfate (APS) and sodium peroxodisulfate (NaPS) were used as co-initiators. The optimum ratio of acetone to water for the formation of a narrow distribution of P(St-co-DVB) particles was 49:11 (g/g). The optimum co-initiator compositions for narrow distribution were 9:1 (g/g) for V-65 to KPS, 11:1 for V-65 to APS and 6:1 for V-65 to NaPS. The yield for these compositions was $54{\sim}57%$ and the largest particle size was obtained with the lowest zeta-potential and CV values. From the XPS measurements, the charge density was increased but the zeta potential decreased with increasing sulfur content, implying that the sulfate group provides the electrostatic stabilization on the particle surface. This suggested that the self-crosslinking between styrene and DVB, the electrostatic stabilization of initiators, and the balanced hydrophobic and hydrophilic properties of the solvents are responsible for the formation of stable P(St-co-DVB) spherical particles with narrow size distribution.

Generation of sub-micron (nano) bubbles and characterization of their fundamental properties

  • Kim, Sangbeom;Kim, Hyoungjun;Han, Mooyoung;Kim, Tschungil
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.382-388
    • /
    • 2019
  • Although nanobubbles attract significant attention, their characteristics and applications have not been thoroughly defined. There are diverse opinions about the definition of nanobubbles and controversy regarding methods that verify their characteristics. This study defines nanobubbles as having a size less than $1{\mu}m$. The generation of these sub-micron (nano) bubbles may be verified by induced coalescence or light scattering. The size of a sub-micron (nano) bubbles may be measured by optical, and confocal laser scanning microscopy. Also, the size may be estimated by the relationship of bubble size with the dissolved oxygen concentration. However, further research is required to accurately define the average bubble size. The zeta potential of sub-micron (nano) bubbles decreases as pH increases, and this trend is consistent for micron bubbles. When the bubble size is reduced to about 700-900 nm, they become stationary in water and lose buoyancy. This characteristic means that measuring the concentration of sub-micron (nano) bubbles by volume may be possible by irradiating them with ultrasonic waves, causing them to merge into micron bubbles. As mass transfer is a function of surface area and rising velocity, this strongly indicates that the application of sub-micron (nano) bubbles may significantly increase mass transfer rates in advanced oxidation and aeration processes.

A Study of Atmospheric Plasma Treatment on Surface Energetics of Carbon Fibers

  • Park, Soo-Jin;Chang, Yong-Hwan;Moon, Cheol-Whan;Suh, Dong-Hack;Im, Seung-Soon;Kim, Yeong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.335-338
    • /
    • 2010
  • In this study, the atmospheric plasma treatment with $He/O_2$ was conducted to modify the surface chemistry of carbon fibers. The effects of plasma treatment parameters on the surface energetics of carbon fibers were experimentally investigated with respect to gas flow ratio, power intensity, and treatment time. Surface characteristics of the carbon fibers were determined by X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), Fourier transform infrared (FT-IR), Zeta-potential, and contact angle measurements. The results indicated that oxygen plasma treatment led to a large amount of reactive functional groups onto the fiber surface, and these groups can form together as physical intermolecular bonding to improve the surface wettability with a hydrophilic polymer matrix.

Surface Modification of Nanofibrillated Cellulose by LbL (Layer-by-Layer) Multilayering and its Effect on the Dewatering Ability of Suspension (LbL 다층흡착에 의한 나노피브릴화 셀룰로오스의 표면 개질과 현탁액의 탈수성에 미치는 영향)

  • Sim, Kyujeong;Youn, Hye Jung;Ahn, Jungeon;Lee, Jegon;Lee, Hyeyoon;Jo, Yeonhee
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.1
    • /
    • pp.46-55
    • /
    • 2014
  • In this study, we modified the surface of nanofibrillated cellulose (NFC) through LbL (Layer-by-Layer) multilayering process with polyelectrolytes and investigated the effects of the NFC modification on the charge of NFC surface and the dewatering ability of NFC suspension. The multilayering process was done onto NFC fibers using polydiallyldimethylammonium chloride (PDADMAC) and poly-sodium 4-styrene sulfonate (PSS) under different dosage and washing conditions. When the washing was carried out in every adsorption stage, the modified NFC had strong cationic or anionic charge depending on the type of polyelectrolyte in the outermost layer and the dewatering ability was not affected. In the case of no washing treatment or washing in the final adsorption stage, however, the zeta potential of NFC was close to an isoelectric point so that the dewatering ability increased remarkably. Low addition level of polyelectrolytes also showed the similar results. The mixing of NFC suspensions with opposite charge resulted in higher network strength and improved dewatering ability due to the flocculation.

Influence of Surface Characteristics of Mesoporous Silica on Pb(II) and Cd(II) Adsorption Behavirous (Mesoporous silica의 표면특성이 Pb(II)와 Cd(II)의 흡착거동에 미치는 영향)

  • Lee, Ha-Young;Lee, Kamp-Du;Park, Sang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.6
    • /
    • pp.673-679
    • /
    • 2008
  • In this study, Mesoporous silica were prepared from hydrothermal synthesis using gel mixture of tetraethylorthosilcate (TEOS) as silica source and cetyltrimethylammonium bromide(CTMABr) as a template. In the optimum synthesis cause, molar ratio of template and silica changed. The surface and structure properties of Mesoporous silica were determined by XRD, SEM, and BET. N$_2$ adsorption isotherm characteristics, including the specific surface area(S$_{BET}$), total pore volume(V$_T$), and average pore diameter(D$_{BJH}$), were determined by BET. Also, the adsorption character of Pb(II) and Cd(II) ion on Mesoporous silica were measured using ICP. As a result, a SBET of 100$\sim$1,500 m$^2$/g was determined from the N$_2$ adsorption isotherm. Also, the average pore diameter of 2$\sim$4 nm. The adsorption of Pb ion and Cd ion on Mesoporous silica become different depending on the pH of solution. The adsorption amount of Mesoporus silica had higher than that of silicagel.

Preparation of Polystyrene Particles Containing Poly(ethylene glycol) Groups and Their Surface Charge Characterization in Dielectric Medium (폴리(에틸렌 글리콜)기를 갖는 폴리스티렌 입자의 제조와 유전 매질내에서의 표면 전하 특성)

  • 김성훈;김배중;권대익;박기홍
    • Polymer(Korea)
    • /
    • v.28 no.6
    • /
    • pp.524-530
    • /
    • 2004
  • Polystyrene particles (PS) with poly(ethylene glycol) units on surface were formed by an emulsifier-free emulsion polymerization using styrene, poly(ethylene glycol) methacrylate (PEG-MMA) or poly(ethylene glycol) dimethacrylate (PEG-diMMA) at pH 7, and followed by freeze-drying to give the corresponding powders. The structures of PS particles were confirmed by FT-IR spectroscopy, and the particle size and distribution the PS particle were observed by scanning electron microscopy and particle analyzer. Monodisperse polymer particles were obtained at a concentration of PEG-MMA 2∼5 mol% or PEG-diMMA 1 mol% relative to styrene. The highest zeta potential of polymer surface was measured to be 183 mV at a polymer of PEG-MMA 5 mol%, which was measured in dielectric medium by means of ELS-8000 dynamic light scattering.

A Numerical Model for Non-Equilibrium Electroosmotic Flow in Micro- and Nanochannels (마이크로/나노 채널에서의 비평형 전기삼투 유동 모사를 위한 수치모델)

  • Kwak Ho Sang;Jr. Ernest. F. Hasselbrink,
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.161-164
    • /
    • 2004
  • A finite volume numerical model is developed for simulating non-equilibrium electroosmotic flow in micro- and nanochannels. The Guoy-Chapman model is adopted to compute the flow and electric potential. The Nernst-Planck equation is employed to trace unsteady transports of ionic species, i.e., time-dependent net charge density. A new set of boundary conditions based on surface charge density are designed rather than using the conventionally-employed zeta potential. A few issues for an efficient computation of electroosmotic flows are discussed. Representative computational examples are given to illustrate the robustness of the numerical model.

  • PDF

The Effect of Steam Treatment on Dyeing Properties of Wool Fibers (증기처리가 양모섬유의 염색성에 미치는 영향)

  • Lee, Mun Cheul;Bae, So Yeung;Wang, In Sook
    • Textile Coloration and Finishing
    • /
    • v.9 no.2
    • /
    • pp.10-16
    • /
    • 1997
  • Merino wool top and fabric have been treated with steams such as superheated steam or high pressure steam. Moisture regain, water absorbency, water penetration, zeta potential, ESCA, SEM, and dyeing behavior were studied. Negative electric potential on the surface of wool fibers by steam treatment became higher than untreated. From the results of ESCA measurement, intensity of $O_{1s}$ was increased by steam treatment. Rate of dyeing and saturation dye exhaustion of wools increased by steam treatment, especially high pressure steam treatment. Moisture regain, water absorbency, water penetration, and surface appearances by SEM photographs of the steam-treated wools didn't change. There is no relationship between dyeing of the steam-treated wool and wettability to water. Therefore It seems likely that relaxation of adhesive filler in interscale of wool by steam treatment accelerate dye penetration into the fiber.

  • PDF

Electrodeposition of Nano TiO2 Powder Dispersed Nickel Composite Coating (전기도금법을 이용한 나노 산화티타늄 니켈 복합도금에 관한 연구)

  • Park, So-Yeon;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.4
    • /
    • pp.65-69
    • /
    • 2012
  • Composite coating can be manufactured during the electroplating with the bath containing a suspension of particles: ceramic, polymer, nanopowders. Improvement of hardness, wear resistance, corrosion resistance and lubrication properties are well-known advantage of composite coating. In this study, nano $TiO_2$ powder dispersed Ni composite plating was investigated. The improvement of surface hardness and photo decomposition effects can be expected in this coating. Zeta potential was measured with pH. The effect of ultrasonication time and types of ultrasonicator were studied to minimize the agglomeration of $TiO_2$ nanopowders in the electrolyte. Optimum conditions for nano $TiO_2$ dispersed Ni composite coating were $40mA/cm^2$ of current density, pH 3.5, and $50^{\circ}C$. At these conditions, $TiO_2$ nanoparticles contents in the Ni deposit was 15-20 at.%.