• Title/Summary/Keyword: surface wind assessment

Search Result 72, Processing Time 0.029 seconds

The Study on Assessment of Roughness Coefficient for Designing Wind Farm in Jeju Island (제주도 풍력발전단지 설계를 위한 조도계수 산정에 대한 연구)

  • Ko, Jung-Woo;Quan, He Chun;Lee, Byung-Gul
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.15-22
    • /
    • 2012
  • The variation in the wind speed with height above ground is called the wind shear profile. In the field of wind resource assessment, analysts typically use one of two mathematical relations to characterize the measured wind shear profile: the logarithmic profile (log law) and the power law profile (power law). The logarithmic law uses the surface roughness as a parameter, and the power law uses the power law exponent as a parameter. The shape of the wind shear profile typically depends on several factors, most notably the roughness of the surrounding terrain and the stability of the atmosphere. Since the atmospheric stability changes with season, time of day, and meteorological conditions, the surface roughness and the power law exponent also tends to change in time. For this study, Using the observed data from Met-mast, located in Pyeongdae, Handong in Jeju. we used the matlab and windograper to calculate roughness length and the law exponents. These calculations are similar to reference the data, but they have different ranges. In the ocean case, each reference data and calculated data was the same, but the crop area is higher than the earlier studies. In addition, the agricultural village is lower than the earlier studies.

SITE-SPECIFIC ATMOSPHERIC DISPERSION CHARACTERISTICS OF KOREAN NUCLEAR POWER PLANT SITES

  • Han, M.H.;Kim, E.H.;Suh, K.S.;Hwang, W.T.;Choi, Y.G.
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.305-309
    • /
    • 2001
  • Site-specific atmospheric dispersion characteristics have been analyzed. The northwest and the southwest wind prevail on nuclear sites of Korea. The annual isobaric surface averaged for twenty years around Korean peninsula shows that west wind prevails. The prevailing west wind is profitable in the viewpoint of radiation protection because three of four nuclear sites are located in the east side. Large scale field tracer experiments over nuclear sites have been conducted for the purpose of analyzing the atmospheric dispersion characteristics and validating a real-time atmospheric dispersion and dose assessment system FADAS. To analyze the site-specific atmospheric dispersion characteristics is essential for making effective countermeasures against a nuclear emergency.

  • PDF

A Case Study on the Meteorological Observation in Spring for the Atmospheric Environment Impact Assessment at Sangin-dong Dalbi Valley, Daegu (대기환경영향평가를 위한 대구광역시 상인동 달비골의 봄철 기상관측 사례분석)

  • Park, Jong-Kil;Jung, Woo-Sik;Hwang, Soo-Jin;Yoon, Ill-Hee;Park, Gil-Un;Kim, Sin-Ho;Kim, Seok-Cheol
    • Journal of Environmental Science International
    • /
    • v.17 no.9
    • /
    • pp.1053-1068
    • /
    • 2008
  • This study aims to produce fundamental database for Environment Impact Assessment by monitoring vertical structure of the atmosphere due to the mountain valley wind in spring season. For this, we observed surface and upper meteorological elements in Sangin-dong, Daegu using the rawinsonde and automatic weather system(AWS). In Sangin-dong, the weather condition was largely affected by mountains when compared to city center. The air temperature was low during the night time and day break, and similar to that of city center during the day time. Relative humidity also showed similar trend; high during the night time and day break and similar to that of city center during the day time. Solar radiation was higher than the city, and the daily maximum temperature was observed later than the city. The synoptic wind during the measurement period was west wind. But during the day time, the west wind was joined by the prevailing wind to become stronger than the night time. During the night time and daybreak, the impact of mountain wind lowered the overall temperature, showing strong geographical influence. The vertical structure of the atmosphere in Dalbi valley, Sangin-dong had a sharp change in air temperature, relative humidity, potential temperature and equivalent potential temperature when measured at the upper part of the mixing layer height. The mixing depth was formed at maximum 1896m above the ground, and in the night time, the inversion layer was formed by radiational cooling and cold mountain wind.

Variation of PM10 Concentration in Seoul in Association with Synoptic Meteorological Conditions (종관기상장에 따른 서울 지역 미세먼지 농도 변화)

  • Lee, Jung-Young;Han, Jin-Seok;Kong, Boo-Joo;Hong, You-Deog;Lee, Jong-Hyun;Chung, Il-Rok
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.5
    • /
    • pp.351-361
    • /
    • 2007
  • To evaluate dominant synoptic classes which affect on $PM_{10}$ concentration in Seoul, 64 synoptic classes are classified from four seasons, 850hPa geopotential wind and lower level stability Index. In this study, we used air monitoring and meteorological data in Seoul for five years from 2001 to 2005. The results indicate that the highest occurrence frequency of synoptic class is under a strong westerly geopotential wind and stable lower atmosphere in spring. The highest $PM_{10}$ concentration of synoptic class is associated with a weak geopotential wind speed and high lower level stability. In that class, not only $PM_{10}$ but $SO_2$, $NO_2$ and CO concentrations are also higher than other classes. The analysis of spacial distribution of $PM_{10}$ concentration in each class are indicate that the influence of synoptic class are similar in the Metropolitan area in Korea. But $PM_{10}$ concentration in some areas in Kyoung-Gi are more higher than in Seoul. The relationship between $PM_{10}$ concentration and Meteorological indicator (relative humidity, temperature, surface wind speed) under same synoptic class is more correlative in Winter than other season.

Impact of boundary layer simulation on predicting radioactive pollutant dispersion: A case study for HANARO research reactor using the WRF-MMIF-CALPUFF modeling system

  • Lim, Kyo-Sun Sunny;Lim, Jong-Myung;Lee, Jiwoo;Shin, Hyeyum Hailey
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.244-252
    • /
    • 2021
  • Wind plays an important role in cases of unexpected radioactive pollutant dispersion, deciding distribution and concentration of the leaked substance. The accurate prediction of wind has been challenging in numerical weather prediction models, especially near the surface because of the complex interaction between turbulent flow and topographic effect. In this study, we investigated the characteristics of atmospheric dispersion of radioactive material (i.e. 137Cs) according to the simulated boundary layer around the HANARO research nuclear reactor in Korea using the Weather Research and Forecasting (WRF)-Mesoscale Model Interface (MMIF)-California Puff (CALPUFF) model system. We examined the impacts of orographic drag on wind field, stability calculation methods, and planetary boundary layer parameterizations on the dispersion of radioactive material under a radioactive leaking scenario. We found that inclusion of the orographic drag effect in the WRF model improved the wind prediction most significantly over the complex terrain area, leading the model system to estimate the radioactive concentration near the reactor more conservatively. We also emphasized the importance of the stability calculation method and employing the skillful boundary layer parameterization to ensure more accurate low atmospheric conditions, in order to simulate more feasible spatial distribution of the radioactive dispersion in leaking scenarios.

Effects of the Subgrid-Scale Orography Parameterization and High-Resolution Surface Data on the Simulated Wind Fields in the WRF Model under the Different Synoptic-Scale Environment (종관 환경 변화에 따른 아격자 산악모수화와 고해상도 지면 자료가 WRF 모델의 바람장 모의에 미치는 영향)

  • Lee, Hyeon-Ji;Kim, Ki-Byung;Lee, Junhong;Shin, Hyeyum Hailey;Chang, Eun-Chul;Lim, Jong-Myoung;Lim, Kyo-Sun Sunny
    • Atmosphere
    • /
    • v.32 no.2
    • /
    • pp.103-118
    • /
    • 2022
  • This study evaluates the simulated meteorological fields with a particular focus on the low-level wind, which plays an important role in air pollutants dispersion, under the varying synoptic environment. Additionally, the effects of subgrid-scale orography parameterization and improved topography/land-use data on the simulated low-level wind is investigated. The WRF model version 4.1.3 is utilized to simulate two cases that were affected by different synoptic environments. One case from 2 to 6 April 2012 presents the substantial low-level wind speed over the Korean peninsula where the synoptic environment is characterized by the baroclinic instability. The other case from 14 to 18 April 2012 presents the relatively weak low-level wind speed and distinct diurnal cycle of low-level meteorological fields. The control simulations of both cases represent the systematic overestimation of the low-level wind speed. The positive bias for the case under the baroclinic instability is considerably alleviated by applying the subgrid-scale orography parameterization. However, the improvement of wind speed for the other case showing relatively weak low-level wind speed is not significant. Applying the high-resolution topography and land-use data also improves the simulated wind speed by reducing the positive bias. Our analysis shows that the increased roughness length in the high-resolution topography and land-use data is the key contributor that reduces the simulated wind speed. The simulated wind direction is also improved with the high-resolution data for both cases. Overall, our study indicates that wind forecasts can be improved through the application of the subgrid-scale orography parameterization and high-resolution topography/land-use data.

ASSESSMENT OF WIND CHARACTERISTICS AND ATMOSPHERIC DISPERSION MODELING OF 137Cs ON THE BARAKAH NPP AREA IN THE UAE

  • Lee, Jong Kuk;Kim, Jea Chul;Lee, Kun Jai;Belorid, Miloslav;Beeley, Philip A.;Yun, Jong-Il
    • Nuclear Engineering and Technology
    • /
    • v.46 no.4
    • /
    • pp.557-568
    • /
    • 2014
  • This paper presents the results of an analysis of wind characteristics and atmosphere dispersion modeling that are based on computational simulation and part of a preliminary study evaluating environmental radiation monitoring system (ERMS) positions within the Barakah nuclear power plant (BNPP). The return period of extreme wind speed was estimated using the Weibull distribution over the life time of the BNPP. In the annual meteorological modeling, the winds from the north and west accounted for more than 90 % of the wind directions. Seasonal effects were not represented. However, a discrepancy in the tendency between daytime and nighttime was observed. Six variations of cesium-137 ($^{137}Cs$) dispersion test were simulated under severe accident condition. The $^{137}Cs$ dispersion was strongly influenced by the direction and speed of the main wind. A virtual receptor was set and calculated for observation of the $^{137}Cs$ movement and accumulation. The results of the surface roughness effect demonstrated that the deposition of $^{137}Cs$ was affected by surface condition. The results of these studies offer useful information for developing environmental radiation monitoring systems (ERMSs) for the BNPP and can be used to assess the environmental effects of new nuclear power plant.

A Study on the Anchoring Safety Assessment of E-Group Anchorage in Ulsan Port (울산항 E 집단정박지 묘박안전성 평가에 관한 연구)

  • Lee, Yun-Sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.172-178
    • /
    • 2014
  • This study suggests the minimum critical external forces based on the assessment of anchoring safety to single anchor situation for representative 8 number of ships in E-group anchorage of Ulsan port. Assessment of anchoring safety is compared holding powers of anchor with external forces of wind, wave and current. Holding powers was reflected materials of seabed, equipment numbers regarding anchor and chain weight, also external forces acting on a hull was calculated considering projected wind area and wetted surface area to the full and ballast conditions respectively. The results of anchoring safety assessments to single anchor showed that the minimum criteria of dragging anchor is a little different from ship's type, size and loading conditions. Bulk carrier can be dragged over the 15m/s of winds and Tanker can be dragged over the 13m/s of winds in case of less than 2knots of currents speed.

Accuracy Assessment of Sea Surface Temperature from NOAA/AVHRR Data in the Seas around Korea and Error Characteristics

  • Park, Kyung-Ae;Lee, Eun-Young;Chung, Sung-Rae;Sohn, Eun-Ha
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.663-675
    • /
    • 2011
  • Sea Surface Temperatures (SSTs) using the equations of NOAA (National Oceanic and Atmospheric Administration) / NESDIS (National Environmental Satellite, Data, and Information Service) were validated over the seas around Korea with satellite-tracked drifter data. A total 1,070 of matchups between satellite data and drifter data were acquired for the period of 2009. The mean rms errors of Multi- Channel SSTs (MCSSTs) and Non-Linear SSTs (NLSSTs) were evaluated to, in most of the cases, less than $1^{\circ}C$. However, the errors revealed dependencies on atmospheric and oceanic conditions. For the most part, SSTs were underestimated in winter and spring, whereas overestimated in summer. In addition to the seasonal characteristics, the errors also presented the effect of atmospheric moist that satellite SSTs were estimated considerably low ($-1.8^{\circ}C$) under extremely dry condition ($T_{11{\mu}m}-T_{12{\mu}m}$ < $0.3^{\circ}C$), whereas the tendency was reversed under moist condition. Wind forcings induced that SSTs tended to be higher for daytime data than in-situ measurements but lower for nighttime data, particularly in the range of low wind speeds. These characteristics imply that the validation of satellite SSTs should be continuously conducted for diverse regional applications.

Impact of Wind Profiler Data Assimilation on Wind Field Assessment over Coastal Areas

  • Park, Soon-Young;Lee, Hwa-Woon;Lee, Soon-Hwan;Kim, Dong-Hyeok
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.3
    • /
    • pp.198-210
    • /
    • 2010
  • Precise analysis of local winds for the prediction of atmospheric phenomena in the planetary boundary layer is extremely important. In this study, wind profiler data with fine time resolution and density in the lower troposphere were used to improve the performance of a numerical atmospheric model of a complex coastal area. Three-dimensional variational data assimilation (3DVAR) was used to assimilate profiler data. Two experiments were conducted to determine the effects of the profiler data on model results. First, we performed an observing system experiment. Second, we implemented a sensitivity test of data assimilation intervals to extend the advantages of the profiler to data assimilation. The lowest errors were observed when using both radio sonde and profiler data to interpret vertical and surface observation data. The sensitivity to the assimilation interval differed according to the synoptic conditions when the focus was on the surface results. The sensitivity to the weak synoptic effect was much larger than to the strong synoptic effect. The hourly-assimilated case showed the lowest root mean square error (RMSE, 1.62 m/s) and highest index of agreement (IOA, 0.82) under weak synoptic conditions, whereas the statistics in the 1, 3, and 6 hourly-assimilated cases were similar under strong synoptic conditions. This indicates that the profiler data better represent complex local circulation in the model with high time and vertical resolution, particularly when the synoptic effect is weak.