• Title/Summary/Keyword: surface visualization

Search Result 585, Processing Time 0.032 seconds

Study on the Fluid-Surface Characteristics by Using Flow Visualization and Numerical Simulation of Stokes Flow in a Cavity (3차원 캐버티 표면의 스톡스 유동 가시화 및 수치해석을 통한 표면 특성 연구)

  • Heo, Hyo-Weon;Lee, Heon-Deok;Jung, Won-Hyuk;Cho, Dong-Sik;Suh, Yong-Kweon
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.3
    • /
    • pp.44-50
    • /
    • 2011
  • In this study, we propose a method for characterizing fluid-mechanical properties of a fluid surface, such as surface dilatational and shear viscosity, by matching the flow visualization and the numerical simulation for a Stokes flow in a three-dimensional cavity. The surface flow is driven by shear stress exerted on the free surface by an external gas flow. The external gas flow is simulated by using a commercial code, while the Stokes flow is calculated by an in-house code. We have found that the surface flow is very sensitive to the surface tension and other properties. The qualitative feature of the surface flow can be reproduced by the parameter tuning.

Droplet anti icing visualization research through hydrophobic variation of surface structure (소수성 표면의 형상 변화를 통한 액적의 방빙 가시화 연구)

  • Jinwook Choi;Wang Tao;Seolha Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.3
    • /
    • pp.7-14
    • /
    • 2023
  • In this study, we investigated the freezing delay time on surfaces with different patterns under -30° conditions through visualization experiments. Among various pattern structures, we fabricated the shape and surface of liquid from the spacing using circular filaments and hole structures. Additionally, using a high-speed camera, we visualized the freezing scenes, enabling us to obtain freezing images and measure the freezing time of the liquid. For each structure, the contact angle and solid fraction of the surface varied. We observed that the freezing delay time was longest when the contact angle was largest and the solid fraction was smallest within the experimental results. We analyzed the variation in anti-icing time using the heat exchange equation between the patterned surface and the liquid.

Visualization of Vortical Flow Around the Free End Surface of a Finite Circular Cylinder Mounted on a Flat Plate (평판에 고정된 유한 실린더 상면표면 주위에 형성되는 와류유동의 가시화)

  • No, Seong-Cheol;Park, Seung-O
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.1
    • /
    • pp.71-77
    • /
    • 2001
  • A flow visualization study using the oil film method and the smoke-laser light sheet arrangement is carried out to investigate the three-dimensional flow pattern around the free end surface region of a finite circular cylinder (aspect ratios of 1.25 and 4.25) mounted on a flat plate. The experiment is performed for the cases of two Reynolds numbers: 5.92${\times}$10$^3$and 1.48${\times}$10(sup)5. Various kinds of singular points on the free-end surface are disclosed from the oil surface flow visualization. The smoke-laser light sheet visualization, to aid in understanding the oil streak-line patterns, clearly demonstrates that a pair of tornado-like vortices marched along the downstream together with a pair of side tip vortices. A topological sketch to characterize the surface flow and the four vortices emanating from the top surface is included.

Polygon Reduction Algorithm for Three-dimensional Surface Visualization (3차원 표면 가시화를 위한 다각형 감소 알고리즘)

  • 유선국;이경상;배수현;김남현
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.5
    • /
    • pp.368-373
    • /
    • 2004
  • Surface visualization can be useful, particularly for internet-based education and simulation system. Since the mesh data size directly affects the downloading and operational performance, the problem that should be solved for efficient surface visualization is to reduce the total number of polygons, constituting the surface geometry as much as Possible. In this paper, an efficient polygon reduction algorithm based on Stokes' theorem, and topology preservation to delete several adjacent vertices simultaneously for past polygon reduction is proposed. The algorithm is irrespective of the shape of polygon, and the number of the polygon. It can also reduce the number of polygons to the minimum number at one time. The performance and the usefulness for medical imaging application was demonstrated using synthesized geometrical objects including plane. cube. cylinder. and sphere. as well as a real human data.

A Visualization Study on the Characteristics of Droplets Impinging on a Hot Surface (고온 열판에 충돌하는 액적의 거동에 대한 유동가시화 연구)

  • Kim, Dong-Yeon;Yi, Seung-Jae;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.21-26
    • /
    • 2012
  • Hydrophobic characteristics of high temperature metal surface were investigated by high-speed visualization of water droplet impact. An aluminum plate was used as the sample plate and the initial diameter of a water droplet was 2 mm. Transient behavior of a single droplet impinging on the surface with and without heating was captured by using a high speed camera running at 4,000 frames per second. The Leidenfrost phenomenon was demonstrated for the case of $300^{\circ}C$ surface temperature, however there was no rebounding of droplet on the cold plate due to hydrophilic nature. The experimental results show that the shape evolution of a droplet impinging on the surface varies with the Weber number, i.e. the ratio of impact inertia to capillary force. The overall water-repellent characteristics of the heated surface was very similar to that of the super hydrophobic surfaces.

Visualization of Elastic Waves Propagating on a Solid Surface with Fatigue Cracks by Laser Ultrasonic Technology

  • Imade, Masaaki;Miyauchi, Hidekazu;Okada, Saburo;Yamamoto, Shigeyuki;Takatsubo, Jyunji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.109.4-109
    • /
    • 2001
  • We have developed a laser ultrasonic system for visualization of elastic waves propagating on a solid surface, in order to visualize ultrasonic waves propagating on opaque media. This system can produce a series of successive images as an animation of wave propagation, because of scanning an optical heterodyne probe to measure surface transient displacements. Using this visualization technique, we observed the scattering and diffraction of ultrasonic waves around various shapes of artificial defects, and examined its application to nondestructive inspection. This imaging system provides various kinds of visualization images such as propagation image, amplitude image, arrival time image and velocity image. We have been confident that this technique is available for nondestructive inspection and materials ...

  • PDF

Ethanol Droplet Impact Behavior Visualization on the Flat and 50㎛ grating groove Al Surface (알루미늄 평판 및 50 ㎛ 간격 격자 표면에 대한 에탄올 액적 충돌 거동 가시화)

  • Kang, Dongkuk;Kwon, Daehee;Chun, Doo-Man;Yeom, Eunseop
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.1
    • /
    • pp.18-25
    • /
    • 2020
  • The droplet impact behavior is dominated by some parameters such as surface temperature, We number, surface and fluid property. Especially, Leidenfrost effect which prevents the contact between surface and droplet is very powerful phenomenon for determining droplet impact behavior. Due to this effect, the impact regime is divided into contact boiling regime and film boiling regime whether the droplet contact with the surface. Many studies have found that surface micro-structures which processed by surface processing are effective to overcome the Leidenfrost effect. In this study, droplet impact behaviors were compared using ethanol both on flat and laser-ablated Al surface. On the flat surface, impact regime was mainly divided by surface temperature. And there is key dominant parameter for each regime. On the laser-ablated surface, we could see changed impact regime and different impact behavior such as jetting and ejection of tiny droplets despite of same impact conditions.

Study on the Application of Various Visualization Techniques for Analysing the Structure of Tribrachial Flame (삼지화염 구조해석을 위한 다양한 가시화 기술 적용에 대한 연구)

  • Kim, Min-Kuk;Won, Sang-Hee;Chung, Suk-Ho
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.74-79
    • /
    • 2005
  • The tribrachial flame in laminar coflow jet has been investigated experimentally with unsteady propagating condition. With adopting various visualization techniques, including OH-PLIF, Rayleigh Scattering technique, it was confirmed that the location of tribrachial point is on the inclined surface of flame and the propagation speed of tribrachial flame was significantly affected by the velocity gradient.

  • PDF

Visualization Study on Kinematics of Bubble Motion in a Water Filled Cylindrical Tank (원형 탱크 내부의 기포운동에 대한 가시화 연구)

  • Kim, Sang-Moon;Jeong, Won-Taek;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.3
    • /
    • pp.41-48
    • /
    • 2010
  • A visualization study to evaluate bubble motion in a tab water filled cylindrical tank with a varying flow rate of compressed air is conducted. The flow rate of compressed air varies from 1 to 5 L/min. Time resolved images are acquired by a high speed camera in 10 bit gray level at 100 fps and the measurement volume is irradiated by a 230 W halogen lamp. It is observed that there are three different regions; the bubble formation region, the rising bubble region and the free surface region. During the rise of bubble, the shape is changed as if an elastic body. Based on the binarized bubble image, the mean diameters of rising bubbles are estimated at beneath of the free surface. As the gas flow rate increases, the mean diameter is increased and the rising velocity also increases with buoyancy force.

A Numerical and Experimental Study of Surface Deflections in Automobile Exterior Panels (자동차 외판의 미세면굴곡 거동의 수치해석적 평가)

  • Park, Chun-Dal;Chung, Wan-Jin;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.134-141
    • /
    • 2006
  • Surface deflections have a great effect on the external appearance of automobiles. Usually, they are occurred on large flat panels containing sudden shape changes and of very small size about $\pm$30$\sim$300$\mu$m. Since the current numerical method is not sufficient for predicting these defects, the correction of these defects still depends on trial and error, which requires a great deal of time and expense. Consequently, developing the numerical method to predict and prevent these defects is very important far improving cosmetic surface qualities. In this study, an evaluation system that can analyze surface deflections using numerical simulation and a visualization system are reported. To calculate the surface deflections numerically, robust algorithms and simulation methodologies are suggested and to visualize them quantitatively, the curvature variation algorithm is proposed. To verify the developed systems, the experimental die of the handle portion of exterior door is analyzed. The results showed that the experimental and simulational visualization are in good agreement. Compensation methods to correct the surface deflections are also tested. The evaluation system proposed in this paper could be used to predict and minimize the occurrence of surface deflections in die manufacturing.