• Title/Summary/Keyword: surface topology

Search Result 163, Processing Time 0.025 seconds

Topology Correction for Flattening of Brain Cortex

  • Kwon Min Jeong;Park Hyun Wook
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.2
    • /
    • pp.73-86
    • /
    • 2005
  • We need to flatten the brain cortex to smooth surface, sphere, or 2D plane in order to view the buried sulci. The rendered 3D surface of the segmented white matter and gray matter does not have the topology of a sphere due to the partial volume effect and segmentation error. A surface without correct topology may lead to incorrect interpretation of local structural relationships and prevent cortical unfolding. Although some algorithms try to correct topology, they require heavy computation and fail to follow the deep and narrow sulci. This paper proposes a method that corrects topology of the rendered surface fast, accurately, and automatically. The proposed method removes fractions beside the main surface, fills cavities in the inside of the main surface, and removes handles in the surface. The proposed method to remove handles has three-step approach. Step 1 performs smoothing operation on the rendered surface. In Step 2, vertices of sphere are gradually deformed to the smoothed surfaces and finally to the boundary of the segmented white matter and gray matter. The Step 2 uses multi-resolutional approach to prevent the deep sulci from geometrical intersection. In Step 3, 3D binary image is constructed from the deformed sphere of Step 2 and 3D surface is regenerated from the 3D binary image to remove intersection that may happen. The experimental results show that the topology is corrected while principle sulci and gyri are preserved and the computation amount is acceptable.

Convex Sharp Edge Detection of CAD Surfaces without Topology (토폴로지 정보가 없는 CAD 곡면의 꺾인 모서리 탐색)

  • 박정환;이정근
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.73-79
    • /
    • 2000
  • The part-surface of mold or stamping-dies consists of a compound surface which consists of lots of composite surfaces, and may have various types of feature shapes including convex sharp edge (CSE). Those CSE features should be considered with care in machining the surface, which necessitates extraction of CSE curves on a compound surface. This work can be done rather easily for a solid model which has a complete topology information. In case of the compound surface without topology information, however, such CSE curves must be gathered through some geometrical calculations paying much computation time. In the paper, extracting CSE curves by the construction of a CSE region-map which can reduce time, and detecting various common edge types are presented.

  • PDF

A Study on Unifying Topology and Numerical Accuracy in Geometric Modeling: Surface to Surface Intersections (토폴로지와 수치적 정확도를 통합한 기하모델링에 관한 연구: 곡면간 교차선)

  • Ko, Kwang-Hee
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.5
    • /
    • pp.344-353
    • /
    • 2007
  • In this paper, we address the problem of robust geometric modeling with emphasis on surface to surface intersections. We consider the topology and the numerical accuracy of an intersection curve to find the best approximation to the exact one. First, we perform the topological configuration of intersection curves, from which we determine the starting and ending points of each monotonic intersection curve segment along with its topological structure. Next, we trace each monotonic intersection curve segment using a validated ODE solver, which provides the error bounds containing the topological structure of the intersection curve and enclosing the exact root without a numerical instance. Then, we choose one approximation curve and adjust it within the bounds by minimizing an objective function measuring the errors from the exact one. Using this process, we can obtain an approximate intersection curve which considers the topology and the numerical accuracy for robust geometric modeling.

Topological View of Viscous Flow behind Transom Stern (트랜섬 선미 후방의 점성 유동장 Topology 관찰)

  • Kim, Wu-Joan;Park, Il-Ryong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.4 s.142
    • /
    • pp.322-329
    • /
    • 2005
  • Viscous flows behind transom stern are analyzed based on CFD simulation results. Stern wave pattern is often complicated due to the abrupt change of stern surface curvature and flow separation at transom. When a ship advances at high speed, whole transom stern is exposed out of water, resulting in the so-called 'dry transom'. However, in the moderate speed regime, stern wave development in conjunction of flow separation makes unstable wavy surface partially covering transom surface, i.e., the so-called 'wetted transom'. Transom wave formation is usually affecting the resistance characteristics of a ship, since the pressure contribution on transom surface as well as the wave-making resistance is changed. Flow modeling for 'wetted transom' is difficult, while the 'dry transom modeling' is often applied for the high-speed vessels. In the present study CFD results from the RANS equation solver using a finite volume method with level-set treatment are utilized to assess the topology of transom flow pattern for a destroyer model (DTMB5415) and a container ship (KCS). It is found that transom flow patterns are quite different for the two ships, in conformity to the shape of submerged transom. Furthermore, the existence of free surface seems to after the flow topology in case of KCS.

Optimal Design of a Disk-Brake Considering the Eigen-Frequency (고유진동수를 고려한 디스크 브레이크의 최적설계)

  • 유정훈;한상훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.655-659
    • /
    • 2003
  • In this study, an improved topology design methodology that is combined with genetic algorithm, response surface method is provided to overcome the limitations of the ordinary topology optimization methods on the complex non-linear problem. the method is applied to a disc brake system for reducing an automobile brake noise. The low frequency that may induces the brake noise under the unstable mode is increased by obtaining the optimal topology. The result is verified by the analysis of variance and confirmed that the estimators for the approximation equations are highly reliable

  • PDF

Structural Optimization of 3D Printed Composite Flight Control Surface according to Diverse Topology Shapes (다양한 위상 형상에 따른 3D 프린트 복합재료 조종면의 구조 최적화)

  • Myeong-Kyu Kim;Nam Seo Goo;Hyoung-Seock Seo
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.211-216
    • /
    • 2023
  • When designing ships and aircraft structures, it is important to design them to satisfy weight reduction and strength. Currently, studies related to topology optimization using 3D printed composite materials are being actively conducted to satisfy the weight reduction and strength of the structure. In this study, structural analysis was performed to analyze the applicability of 3D printed composite materials to the flight control surface, one of the parts of an aircraft or unmanned aerial vehicle. The optimal topology shape of the flight control surface for the bending load was analyzed by considering three types (hexagonal, rectangular, triangular) of the topology shape of the flight control surface. In addition, the bending strength of the flight control surface was analyzed when four types of reinforcing materials (carbon fiber, glass fiber, high-strength high-temperature glass fiber, and kevlar) of the 3D printed composite material were applied. As a result of comparing the three-point bending test results with the finite element method results, it was confirmed that the flight control surface with hexagonal topology shape made of carbon fiber and Kevlar had excellent performance. And it is judged that the 3D printed composite can be sufficiently applied to the flight control surface.

A Study on Topology Optimization of the Tracked Vehicle Bottom Plate under Traveling Loading (주행시 궤도차량 바닥판의 위상최적설계에 관한 연구)

  • Hwang, Young-Jin;Kim, Jong-Bum;Lee, Seok-Soon;Choi, Chang-Gon;Son, Jae-Hong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.558-563
    • /
    • 2003
  • The tracked vehicle travel on off rod and on rod. So the tracked vehicle need a sufficient stiffness and a lightweight. In this study we performed FEA for the track vehicle and performed topology optimization based on the results of FEA. The displacements of road wheel are used as displacement constraint for topology optimization. We performed topology optimization with the control of the frame size which is the results of topology optimization and suggested the shaped of the tracked vehicle bottom plate of topology optimization

  • PDF

A Scanning Flow Impedance Micrscope (유체역학 현상을 이용한 현미경 검사법 개발)

  • Kim, Tae-Young;Kim, Dong-Kwon;Kim, Sung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2670-2675
    • /
    • 2008
  • We introduce a new type of surface microscope using hydrodynamic phenomena. The fluid flow through the opening of the pipette probe is blocked at short distances between the probe and the surface, thus increasing the pressure loss. Therefore, a scanning flow impedance microscope (SFIM) can image the surface topology by scanning the probe with measuring the pressure loss. The SFIM can display the topology regardless of surface hardness, surface electrical conductivity, and surrounding fluid. The present letter contains the first experimental results on surface topography obtained with this novel microscope. The preliminary results in air demonstrate the lateral resolution of the SFIM is very close to the inner diameter of the probe.

  • PDF

Topology Optimization of Railway Brake Pad by Contact Analysis (접촉해석에 의한 철도차량용 제동패드의 형상 최적화)

  • Goo, Byeong-Choon;Na, In-Kyun
    • Tribology and Lubricants
    • /
    • v.30 no.3
    • /
    • pp.177-182
    • /
    • 2014
  • To stop a high speed train running at the speed of 300 km/h, the disc brake for the train should be able to dissipate enormous kinetic energy of the train into frictional heat energy. Sintered pin-type metals are mostly used for friction materials of high speed brake pads. A pad comprises several friction pins, and the topology, length, flexibility, composition, etc. have a great influence on the tribological properties of the disc brake. In this study, the topology of the friction pins in a pad was our main concern. We presented the optimization of the topology of a railcar brake pad with nine-pin-type friction materials by thermo-mechanical contact analysis. We modeled the brake pad with/without a back plate. To simulate a continuous braking, the pad or friction materials were rotated at constant velocity on the friction surface of the disc. We varied the positions of the nine friction materials to compare the temperature distributions on the disc surface. In a non-optimized brake pad, the distance between two neighboring friction materials in the radial direction from the rotational center of the disc was not equal. In an optimized pad, the distance between two neighboring friction materials in the radial direction was equal. The temperature distribution on the disc surface fluctuated more for the former than the latter. Optimizing the pad reduced the maximum temperature of the brake disc by more than 10%.