• Title/Summary/Keyword: surface textured

검색결과 297건 처리시간 0.026초

(110)〈110〉 집합조직을 가지는 박막선재용 Ag 기판의 제조 (Fabrication of (110)〈110〉 textured Ag substrate for coated conductors)

  • 임준형;지봉기;이동욱;주진호;나완수;김찬중;홍계원
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 학술대회 논문집
    • /
    • pp.72-74
    • /
    • 2003
  • We fabricated textured Ag substrates for coated conductor and evaluated the effects of annealing temperature on microstructural evolution, texture formation, and surface morphology. A strong {110}〈110〉 textured Ag substrate was obtained by cold rolling and annealing at 80$0^{\circ}C$: the full-width at half-maximum(FWHM) value of {110}〈110〉 poles was as sharp as 10$^{\circ}$. Surface morphology was evaluated by using Atomic force microscopy(AFM). Root-mean-square(RMS) roughness of the substrate annealed at 80$0^{\circ}C$ was 39.2 nm. The substrate of strong texture and smooth surface, fabricated in our study, is considered to be suitable for use as a substrate for deposition of superconductor films.

  • PDF

Influence of Surface Texturing on the Electrical and Optical Properties of Aluminum Doped Zinc Oxide Thin Films

  • Lee, Jaeh-Yeong;Shim, Joong-Pyo;Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • 제9권4호
    • /
    • pp.461-465
    • /
    • 2011
  • An aluminum doped zinc oxide (AZO) film for front contacts of thin film solar cells, in this work, were deposited by r.f. magnetron sputtering, and then etched in diluted hydrochloric acid solution for different times. Effects of surface texturing on the electro-optical properties of AZO films were investigated. Also, to clarify the light trapping of textured AZO film, amorphous silicon thin film solar cells were fabricated on the textured AZO/glass substrate and the performance of solar cells were studied. After texturing, the spectral haze at the visible range of 400 ~750 nm increased substantially with the etching time, without a change in the resistivity. The conversion efficiency of amorphous Si solar cells with textured AZO film as a front electrode was improved by the increase of short-circuit current density ($J_{sc}$), compared to cell with flat AZO films.

절연막을 이용한 단면 표면조직화 결정질 실리콘 태양전지 (The Single-Side Textured Crystalline Silicon Solar Cell Using Dielectric Coating Layer)

  • 도겸선;박석기;명재민;유권종;송희은
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.245-248
    • /
    • 2011
  • Many researches have been carried out to improve light absorption in the crystalline silicon solar cell fabrication. The rear reflection is applied to increase the path length of light, resulting in the light absorption enhancement and thus the efficiency improvement mainly due to increase in short circuit current. In this paper, we manufactured the silicon solar cell using the mono crystalline silicon wafers with $156{\times}156mm^2$, 0.5~3.0 ${\Omega}{\cdot}cm$ of resistivity and p-type. After saw damage removal, the dielectric film ($SiN_x$)on the back surface was deposited, followed by surface texturing in the KOH solution. It resulted in single-side texturing wafer. Then the dielectric film was removed in the HF solution. The silicon wafers were doped with phosphorus by $POCl_3$ with the sheet resistance 50 ${\Omega}/{\Box}$ and then the silicon nitride was deposited on the front surface by the PECVD with 80nm thickness. The electrodes were formed by screen-printing with Ag and Al paste for front and back surface, respectively. The reflectance and transmittance for the single-sided and double-sided textured wafers were compared. The double-sided textured wafer showed higher reflectance and lower transmittance at the long wavelength region, compared to single-sided. The completed crystalline silicon solar cells with different back surface texture showed the conversion efficiency of 17.4% for the single sided and 17.3% for the double sided. The efficiency improvement with single-sided textured solar cell resulted from reflectance increase on back surface and light absorption enhancement.

  • PDF

그라인딩 공정과 선택적 습식 식각 공정을 이용한 단결정 실리콘 표면의 반사율에 관한 연구 (A study of Reflectance of Textured Crystalline Si Surface Fabricated by using Preferential Aqueous Etching and Grinding Processes)

  • 우태기;김영환;안효석;김성일
    • 마이크로전자및패키징학회지
    • /
    • 제16권3호
    • /
    • pp.61-65
    • /
    • 2009
  • 단결정 실리콘 웨이퍼 위에 그라인딩 공정을 사용하여 인위적으로 결정학적 결함을 만들고 선택적 습식 식각 공정을 통하여 반사율을 저감시켜 태양전지에 적용할 수 있는 새로운 표면 조직을 형성하였다. 식각 용액의 농도와 식각 시간에 따른 표면 형태의 변화를 분석하고 그에 따른 표면의 광학적 반사율의 변화를 측정하였다. 결정학적 결함 분석과 표면 형태의 관찰은 각각 투과전자 현미경과 주사전자현미경을 이용하였고 광학적 특성은 spectrophotometer를 이용하여 분석하였다. 상기 방법에 의한 최적화된 실리콘 표면의 반사율은 평균 1%이하의 우수한 결과를 보였으며 짧은 공정시간 및 가격효율성 면에서 효과적인 제조 방법이라고 사료된다.

  • PDF

결정질 실리콘 태양전지의 광학적 손실 감소를 위한 표면구조 개선에 관한 연구 (Investigation of the surface structure improvement to reduce the optical losses of crystalline silicon solar cells)

  • 이은주;이수홍
    • 신재생에너지
    • /
    • 제2권2호
    • /
    • pp.4-8
    • /
    • 2006
  • Reduction of optical losses in crystalline silicon solar cells by surface modification is one of the most important issues of silicon photovoltaics. Porous Si layers on the front surface of textured Si substrates have been investigated with the aim of improving the optical losses of the solar cells, because an anti-reflection coating and a surface passivation can be obtained simultaneously in one process. We have demonstrated the feasibility of a very efficient porous Si AR layer, prepared by a simple, cost effective, electrochemical etching method. Silicon p-type CZ (100) oriented wafers were textured by anisotropic etching in sodium carbonate solution. Then, the porous Si layer were formed by electrochemical etching in HF solutions. After that, the properties of porous Si in terms of morphology, structure and reflectance are summarized. The surface morphology of porous Si layers were investigated using SEM. The formation of a porous Si layer about $0.1{\mu}m$ thick on the textured silicon wafer result in an effective reflectance coefficient Reff lower than 5% in the wavelength region from 400 to 1000nm. Such a surface modification allows improving the Si solar cell characteristics.

  • PDF

결정질 실리콘 태양전지의 광학적 손실 감소를 위한 표면구조 개선에 관한 연구 (Investigation of the surface structure improvement to reduce the optical losses of crystalline silicon solar cells)

  • 이은주;이수홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.183-186
    • /
    • 2006
  • Reduction of optical losses in crystalline silicon solar cells by surface modification is one of the most important issues of silicon photovoltaics. Porous Si layers on the front surface of textured Si substrates have been investigated with the aim of improving the optical losses of the solar cells, because an anti-reflection coating and a surface passivation can be obtained simultaneously in one process. We have demonstrated the feasibility of a very efficient porous Si AR layer, prepared by a simple, cost effective, electrochemical etching method. Silicon p-type CZ (100) oriented wafers were textured by anisotropic etching in sodium carbonate solution. Then, the porous Si layer were formed by electrochemical etching in HF solutions. After that, the properties of porous Si in terms of morphology, structure and reflectance are summarized. The surface morphology of porous Si layers were investigated using SEM. The formation of a porous Si layer about $0.1{\mu}m$ thick on the textured silicon wafer result in an effective reflectance coefficient $R_{eff}$ lower than 5% in the wavelength region from 400 to 1000nm. Such a surface modification allows improving the Si solar cell characteristics.

  • PDF

결정질 실리콘 태양전지용 실리콘 기판의 표면 미세구조에 따른 곡강도 특성 (The Flexural Strengths of Silicon Substrates with Various Surface Morphologies for Silicon Solar Cells)

  • 이준성;권순우;박하영;김영도;김형준;임희진;윤세왕;김동환
    • 한국재료학회지
    • /
    • 제19권1호
    • /
    • pp.18-23
    • /
    • 2009
  • The influence of various surface morphologies on the mechanical strength of silicon substrates was investigated in this study. The yield for the solar cell industry is mainly related to the fracturing of silicon wafers during the manufacturing process. The flexural strengths of silicon substrates were influenced by the density of the pyramids as well as by the size and the rounded surface of the pyramids. To characterize and optimize the relevant texturing process in terms of mechanical stability and the fabrication yield, the mechanical properties of textured silicon substrates were investigated to optimize the size and morphology of random pyramids. Several types of silicon substrates were studied, including the planar type, a textured surface with large and small pyramids, and a textured surface with rounded pyramids. The surface morphology and a cross-section of the as-textured and fractured silicon substrates were investigated by scanning electron microscopy.

돌기형 지오멤브레인에 의한 전단 메카니즘에 관한 실험 연구 (Experimental Study on Shear Mechanism Caused by Textured Geomembrane)

  • 이석원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 토목섬유 학술발표회 논문집
    • /
    • pp.57-68
    • /
    • 1999
  • This paper summarizes the results of a study which uses the recently developed Optical Profile Microscopy technique (Dove and Frost, 1996) as the basis for investigating the role of geomembrane surface roughness on the shear mechanism of geomembrane/geotextile interfaces. The alternative roughness parameters which consider the direction of shearing are described. These directional parameters are compared with the existing roughness parameters, and the relationship between these directional and non-directional parameters are investigated. Then, the relationship between interface shear strength and surface roughness quantified at the interface is investigated. The results show that interface friction can be quantitatively related to the surface roughness of the geomembrane. The peak and residual interface strengths increase dramatically through the use of textured geomembranes as opposed to smooth geomembranes. For the smooth geomembranes, the sliding of the geotextile is the main shear mechanism. For the textured geomembranes, the peak interface strength is mainly mobilized through the micro-texture of the geomembrane, however, the residual interface strength is primarily attributed to macro scale surface roughness which pulls out and breaks the filaments from the geotextile. The results of this study can be extended to the other interfaces such as joints in rock mass, and also can be used to provide a quantitative framework that can lead to a significantly improved basis for the selection and design of geotextiles and geomembranes in direct contact.

  • PDF

지배주파수도를 이용한 미소 표면 결함 추출을 위한 영상 처리 알고리듬 (A visual inspection algorithm for detecting infinitesimal surface defects by using dominant frequency map)

  • 김상원;권인소
    • 제어로봇시스템학회논문지
    • /
    • 제2권1호
    • /
    • pp.26-34
    • /
    • 1996
  • One of the challenging tasks in visual inspection using CCD camera is to identify surface defects in an image with complex textured backgeound. In microscopic view, the surface of real objects shows regular or random textured patterns. In this paper, we present a visual inspection algorithm to extract abnormal surface defects in an image with textured background. The algorithm uses the space and frequency information at the same time by introducing the Dominant Frequency Map(DFM) which can describe the frequency characteristics of every small local region of an input image. We demonstrate the feasibility and effectiveness of the method through a series of real experiments for a 14" TV CRT mold. The method successfully identifies a variety of infinitesimal defects, whose size is larger than $50\mu\textrm{m}$, of the mold. The experimental results show that the DFM based method is less sensitive to the environmental changes, such as illumination and defocusing, than conventional vision techniques.ques.

  • PDF

다결정 실리콘 태양전지의 광학적 손실 감소를 위한 표면 텍스쳐링에 관한 연구 (Investigation of surface texturing to reduce optical losses for multicrystalline silicon solar cells)

  • 김지선;김범호;이수홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.264-267
    • /
    • 2007
  • It is important to reduce optical losses from front surface reflection to improve the efficiency of crystalline silicon solar cells. Surface texturing by isotropic etching with acid solution based on HF and $HNO_3$ is one of the promising methods that can reduce surface reflectance. Anisotropic texturing with alkali solution is not suitable for multicrystalline silicon wafers because of its various grain orientations. In this paper, we textured multicrystalline silicon wafers by simple wet chemical etching using acid solution to reduce front surface reflectance. After that, surface morphology of textured wafer was observed by Scanning Electron Microscope(SEM) and Atomic Force Microscope(AFM), surface reflectance was measured in wavelength from 400nm to 1000nm. We obtained 29.29% surface reflectance by isotropic texturing with acid solution in wavelength from 400nm to 1000nm for fabrication of multicrystalline silicon solar cells.

  • PDF