• Title/Summary/Keyword: surface sediments facies

Search Result 55, Processing Time 0.026 seconds

Characteristics of Sediments in the Kanghwa Tidal Flat on the west coast of Korea (한국 서해 강화 갯벌의 퇴적물 특성)

  • Woo, Han Jun;Bahk, Jang Jun;Lee, Yeon Gyu;Je, Jong Geel;Choi, Jae Ung
    • Journal of Wetlands Research
    • /
    • v.6 no.1
    • /
    • pp.167-178
    • /
    • 2004
  • The southern tidal flat of Kanghwa Island is one of the biggest flats on the west coast of Korea. Tide is typically a semidiurnal with maximum range of about 10m. The tidal flat receives large amount of sediments from Han River system. Surface sediments for sedimentary analyses were sampled at 83 stations in the study area in August 2003. The surface sediments consisted of five sedimentary facies. Generally, sandy mud sediments dominated in the southern tidal flat of Kanghwa Island, whereas sand sediments dominated in channel and subtidal zones of the western part of Kanghwa Island. The area of sandy mud sediment extended to eastward tidal flat compared to sedimentary facies in August 1997. Sedimentary facies analysis of three core sediments from the tidal flat to the south of the Kangwha Island revealed three sedimentary facies: trough-cross-bedded sand, laminated silt, and bioturbated silt. Distribution of the facies in the cores suggested that sedimentation rates has been generally high in the margin of main tidal channel, especially in the east of the Donggeum Island. Twelve-and-half-hour anchoring survey was carried out for measurements of hydrodynamic parameters at Yeomha channel near Choji Bridge(K1) and channel near Donggeum Island(K2) in June 2003. Residual flows indicated strong ebb-dominated tidal currents. Depth-integrated net suspended sediment loads for one tidal cycle were seaward movement with 309,217.9kg/m and 128,123.1kg/m at station K1 and K2, respectively. The higher value of net suspended sediment loads at station K1 suggested that lots of suspended sediments from Han River deposited in the eastern part of tidal flat.

  • PDF

Change of Heavy Metals and Sediment Facies in Surface Sediments of the Shihwa Lake (시화호 표층퇴적물의 중금속 및 퇴적상 변화)

  • 최만식;천종화;우한준;이희일
    • Journal of Environmental Science International
    • /
    • v.8 no.5
    • /
    • pp.593-600
    • /
    • 1999
  • In order to determine the changes of sediment facies and metal levels in surface sediments after the construction of Shiwha Lake, surface sediments were sampled at 8 sites located on the main channel monthly from June, 1995 to August, 1996 and analysed for 12 metals (Al, Fe, Mn, V, Cr, Co, Ni, Cu, Zn, Cd, As and Pb) by ICP/AES and ICP/MS. Two groups of sampling sites(the inner lake with 3 sites and the outer lake with 5 sites) are subdivided by the surface morphology ; the inner lake is a shallow channel area with a gentle slope, while the outer lake is relatively deep and wide channel with a steep slope which has many small distributaries. After the construction of dam, fine terrestrial materials were deposited near the outer lake, which resulted in the change of major sediment facies from sandy silt to mud. With the deposition of fine sediments in the outer lake, anoxic water column induced the formation of sulfide compounds with Cu, Cd, Zn and part of Pb. Metal (Cr, Ni, Cu, Zn and Cd) contents in sediments increased up to twice within 2 years after the construction of dam. This is due to the direct input of industrial and municipal wastes into the lake and the accumulation of metals within the lake. In addition, frequent resuspension of contaminated sediments in a shallow part of the lake may make metal-enriched materials transport near the outer lake with fine terrestrial materials. As the enrichment of Cu, Zn, Cd and part of Pb in the Shiwha Lake may be related to the formation of unstable sulfide compounds by sulfate reduction in anoxic water or sediment column, the effect of mixing with open coastal seawater is discussed.

  • PDF

Distribution Characteristics of Surface Sediments and Metal Elements in Hampyong Bay, the Southwestern Coast of Korea (함평만 표층퇴적물과 금속원소들의 분포 특성)

  • Youn Seok-Tai;Koh Yeong-Koo;Ryu Sang-Ock
    • Journal of Environmental Science International
    • /
    • v.8 no.6
    • /
    • pp.677-684
    • /
    • 1999
  • To investigate size distribution and metallic elements of surface sediments in Hampyong Bay, the southwestern coast of Korea, sedimentological and geochemical studies on surface sediments are carried out. The surface sediments of Hampyong Bay are classified into gravel, muddy sandy gravel, gravelly muddy sand, gravelly sandy mud, mud facies in accordance with areal characteristics. The coarse sediments are distributed on the subtidal zone along the main tidal channel and southeast intertidal flat of Hampyong Bay. On the other hand, the fine sediments are dominated in northeast and west intertidal flat of Hampyong Bay. Most metallic elements except for Ba in the sediments are closely interrelated with fine sediments and mutually with each element. Ba is maybe related with sandy sediments and inversely related with carbonate contents. Normalized by Al content, the sediment do not show any remarkable metal enrichments influenced by resonable artificial or environmental factors.

  • PDF

Spatial and Temporal Variation of Grain Size of the Surface Sediments in Kwangyang Bay, South Coast of Korea (한반도 남해안 광양만 표층퇴적물 입도의 시ㆍ공간적 변화)

  • 류상옥
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.3
    • /
    • pp.340-348
    • /
    • 2003
  • Sedimentological investigations on surface and suspended sediments were performed in Kwangyang Bay of the middle South Sea in order to reveal recent changes in depositional environments concerning anthropogenic influence. A variety of coastal developments caused the texture of the surface sediments to become distinctively finer, particularly in the southwestern part of the bay. Accordingly, the westward lining sedimentary facies was somewhat simplified from triple-mode distribution to the dual-mode one by the construction of POSCO. This east-west distribution to the sedimentary facies has recently graded into the north-south distribution by further construction of other industrial complexes including Kwangyang Port. The prominent textural changes in surface sediments are most likely associated with weakening of tidal currents related to the developments which is anticipated to be .still continued. The distribution and flux estimation of suspended sediments suggest a noticeable import of fine particles into the bay predominantly through a northern entrance rather than the southern entrance. The movements of suspended sediments in the water level near the seabed prevailed over those of the mid and surficial levels.

Fluvial Deposits Distributed along the Seomjin River (섬진강 유역의 하성 퇴적층에 관한 연구)

  • You, Hoen-Su;Cho, Seok-Hee;Koh, Yeong-Koo
    • Journal of the Korean earth science society
    • /
    • v.21 no.2
    • /
    • pp.174-187
    • /
    • 2000
  • The Quaternary coarse-grained sandy sediments are distributed along the channels of Seomjin River. The fluvial sediments were sedimentologically studied in horizontal and vertical distributions. To analyze depositional environments and facies changes in the sediments, sediment sampling from river mouth to upper stream and desctriptive approaches to the sediment profiles outcropped near Kurye were carried out. The sediments along the stream lines of the river are assigned to very coarse to coarse sand in grain size. The sediment grains are widely scattered in sorting and moderately sorted in average. For skewness and kurtosis, the sediments ranges from very fine to very coarse skewed and from very lepto-kurtic to extremelyl epto-kurtic states, respectively. The sediments are divided into slightly gravelly sand, gravelly sand and sandy gravel in sediment type. The pain shape in the sandy sediments are dominant in equant and tabular forms showing wide varieties. The sandy sediments are mostly poorly sorted and are highly variable in surface texture with SEM. Some smaller grains in the sediments ordinarily show polished surfaces. Of those grains, quartz ones are commonly angular to surounded. On the basis of facies changes and sedimentary structures, outcropped fluvial sediment profiles in Kurye are classified into xGyS, mGyS, gGyS, xSM, xS, mS, mGyM, IgM in facies. These eight facies are reformed as facies assemblage I and ll. The facies assemblage I and II are interpreted as the products of the channel deposits in braided stream and flood plain ones besides channels, respectively. The change facies assemblage I with facies assemblage ll imply that depositional environments hadbeen migrated from braied sream to flood plain ones.

  • PDF

Analysis on the Sedimentary Environment and Microphytobenthos Distribution in the Geunso Bay Tidal Flat Using Remotely Sensed Data (원격탐사 자료를 이용한 근소만 갯벌 퇴적환경 및 저서미세조류 환경 분석)

  • Choi, Jong-Kuk;Ryu, Joo-Hyung;Eom, Jin-Ah;Roh, Seung-Mok;Noh, Jae-Hoon
    • Journal of Wetlands Research
    • /
    • v.12 no.3
    • /
    • pp.67-78
    • /
    • 2010
  • Surface sedimentary facies and the change of microphytobenthos distribution in Geunso Bay tidal flat were monitored using remotely sensed data. Sediment distribution was analyzed along with the spectral reflectance based on the in situ data, and the spectral characteristics of the area where microphytobenthos occupied was examined. A medium to low spatial resolution of satellite image was not suitable for the detection of the surface sediments changes in the study area due to its ambiguity in the sedimentary facies boundary, but the seasonal changes of microphytobenthos distribution could be obviously detected. However, area of predominance of sand grains and seagrass distribution could be distinctly identified from a high spatial resolution remote sensing image. From this, it is expected that KOMPSAT-2 satellite images can be applied effectively to the study on the surface sedimentary facies and detailed ecological mapping in a tidal flat.

Seasonal Variation of Surface Sediments in the Kwangseungri Beach, Gochanggun, Korea (고창군 광승리 해빈 표층 퇴적물의 계절 변화)

  • So, Kwang-Suk;Ryang, Woo-Hun;Choi, Sin-Lee;Kwon, Yi-Kyun
    • Journal of the Korean earth science society
    • /
    • v.33 no.6
    • /
    • pp.497-509
    • /
    • 2012
  • The Gochanggun Kwangseungri macro-tide open-coast beach, located in the southwestern coast of Korea, was investigated in terms of the seasonal variations of surface sediment facies and sedimentary environment. Surface sediments of 45 sites in four seasons (May 2006 - February 2007) were sampled along three survey lines (15 sites in each survey line). The surface sediments of the Kwangseungri Beach are mainly composed of fine-grained sands, and its mean grain size is the coarsest in winter. Mud facies partly exists in summer, whereas it is nearly absent in winter. The spatial distribution of surface sediments shows a coast-parallel band of fine and medium sands during spring, fall, and winter. In the northern part, the study area is dominated by fine sands during summer, whereas by coarse sands during winter. These results can be interpreted that tide is more effective than wave on the surface sediment distribution of the Kwangseungri Beach during the summer season.

Sedimentary Environments in the Hwangdo Tidal Flat, Cheonsu Bay (천수만 황도 갯벌의 퇴적환경)

  • Woo, Han Jun;Choi, Jae Ung;Ryu, Joo-Hyung;Choi, Song-Hwa;Kim, Seong-Ryul
    • Journal of Wetlands Research
    • /
    • v.7 no.2
    • /
    • pp.53-67
    • /
    • 2005
  • Cheonsu bay, which is typically a semi-closed type, is characterized by various environments such as channels, sand bars, small islands and tidal flats. The construction of Seosan A and B sea dikes from 1983 to 1985 might continuously change sedimentary environments in the northern part of the bay. In order to investigate sedimentary environment, surface and core sediments were sampled at the Hwangdo tidal flat and adjacent sea in June and October 2003. The surface sediments consisted of five sedimentary facies. Generally, the surface sediments in October were changed coarser on the tidal flat and little changed in the subtidal area compared to those in June 2003. Sedimentary facies analysis of three core sediments suggested that wave and tidal current were relatively strong in the tidal flat near Hwangdo, whereas the energy was relatively low in the tidal flat near channel. Sediment accumulation rates in the Hwangdo tidal flat during 11 months indicated that sediments deposited in the central part, whereas eroded in eastern and western sides of the tidal flat. These caused that sea dike changed tidal current patterns and sediment supplies.

  • PDF

Seasonal Variation of Surface Sediments in 2014 on the Gochang Open-Coast Intertidal Flat, Southwestern Korea (고창 개방형 조간대 표층 퇴적물의 2014년 계절 변화)

  • Kang, Sol-Ip;Ryang, Woo-Hun;Jin, Jae-Hwa;Chun, Seung-Soo
    • Journal of the Korean earth science society
    • /
    • v.37 no.2
    • /
    • pp.89-106
    • /
    • 2016
  • The Gochang open-coast intertidal flat is located in the southwestern coast of Korea (the eastern part of the Yellow Sea), characterized by macro-tidal range, an open-coast type, and sand substrates. This study has investigated seasonal variation in sedimentary facies of surface sediments in the Gochang intertidal flat. In the four seasons of February, May, August, and November, 2014, surface sediments of 252 sites in total were sampled and analyzed along three survey lines. The surface sediments of the Gochang intertidal flat in 2014 consisted mainly of fine-grained sand sediments showing a trend in grain size to be coarser in winter and finer in summer. Based on seasonal wave and tidal level data recorded near the study area, it was interpreted that the seasonal effects of wave were stronger than those of tide as a factor controlling surface sedimentation. High waves in winter resulted in the coarsening trend of grain size in surface sediments, whereas, during summer time, the sediments became finer by relatively low waves. Spatial sedimentary facies of the Gochang intertidal flat in 2014 represented that seasonal deviation of the upper tidal zone was larger than that of the lower tidal zone, hence sediments getting coarser in grain size and poorly sorted in the upper tidal zone. From upper to lower tidal zone, the grain size became finer and sediments were better-sorted, showing smaller seasonal deviations.

Geochemical characteristics and benthic faunal facies in the sediments around the Oenaro Island, southern part of Korea (외나로도 주변해역 퇴적물의 지화학적 특성과 저서 생물상)

  • Hyun, Sang-Min;Choi, Jin-Woo;Shin, Kyung-Soon;Jang, Man
    • Journal of Environmental Science International
    • /
    • v.11 no.3
    • /
    • pp.215-225
    • /
    • 2002
  • In order to evaluate the relationship between geochemical characteristics and benthic facies of the sediments from the Oenaro Island where red tide proliferation is first observed every year including this year, surface and short multiple core sediment samples were analyzed in terms of geochemical and benthic facies variation. The contents of organic carbon, carbonate, and sulfide gas were relatively low. The variation in C/N ratios, which indicate nature of organic carbon, suggested that the organic carbon recorded in the study area is composed of mixtures of marine and terrigenous organic matters. The concentration of minor elements found at the surface and multiple core sediment samples were also low as well as the enrichment factors(Ef) for the seven heavy metals indicated that the sediment of this area is not polluted significantly. The macrobenthic faunal community comprised 61 species, and their mean density was 708 ind./m2. Polychaete worms were major taxa of this benthic community. A crustacean amphipod, Melita sp. was the most abundant species accounted for 20.7% of total abundance, and the small polychaetes such as Heteromastus filiformis, Paralacydonia poradoxa, Magelona japonica and Sigambra tentaculata were the next dominant species. The macrobenthos around the Oenaro Island were more diverse and abundant than that in Gamak Bay. The benthic communities in the study area sustained somewhat different species composition based on the cluster analysis and the MDS ordination. The benthic community health condition at three stations seemed to be unbalanced, and slightly polluted based on the biological index such as BPI and BC. There was no clear relationship between the geochemistry characteristic and the benthic faunal facies attributed by the micro-algal blooms in this coastal area.