• Title/Summary/Keyword: surface sedimentary facies

Search Result 55, Processing Time 0.02 seconds

Generation of Large-scale Map of Surface Sedimentary Facies in Intertidal Zone by Using UAV Data and Object-based Image Analysis (OBIA) (UAV 자료와 객체기반영상분석을 활용한 대축척 갯벌 표층 퇴적상 분류도 작성)

  • Kim, Kye-Lim;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.277-292
    • /
    • 2020
  • The purpose of this study is to propose the possibility of precise surface sedimentary facies classification and a more accurate classification method by generating the large-scale map of surface sedimentary facies based on UAV data and object-based image analysis (OBIA) for Hwang-do tidal flat in Cheonsu bay. The very high resolution UAV data extracted factors that affect the classification of surface sedimentary facies, such as RGB ortho imagery, Digital elevation model (DEM), and tidal channel density, and analyzed the principal components of surface sedimentary facies through statistical analysis methods. Based on principal components, input data to be used for classification of surface sedimentary facies were divided into three cases such as (1) visible band spectrum, (2) topographical elevation and tidal channel density, (3) visible band spectrum and topographical elevation, tidal channel density. The object-based image analysis classification method was applied to map the classification of surface sedimentary facies according to conditions of input data. The surface sedimentary facies could be classified into a total of six sedimentary facies following the folk classification criteria. In addition, the use of visible band spectrum, topographical elevation, and tidal channel density enabled the most effective classification of surface sedimentary facies with a total accuracy of 63.04% and the Kappa coefficient of 0.54.

Classification of Sedimentary Facies Using IKONOS Image in Hwangdo Tidal Flat, Cheonsu Bay (IKONOS 영상을 이용한 천수만 황도 갯벌 표층 퇴적상 분류)

  • Ryu, Joo-Hyung;Woo, Han Jun;Park, Chan-Hong;Yoo, Hong-Rhyong
    • Journal of Wetlands Research
    • /
    • v.7 no.2
    • /
    • pp.121-132
    • /
    • 2005
  • To classify the surface sedimentary facies using IKONOS image collected over Hwangdo tidal flat in Cheonsu Bay, the optical reflectance was compared for characterizing various sedimentary environments such as grain size, tidal channel pattern and area ratio of surface remnant water. The intertidal DEM (Digital Elevation Model) was generated by echo-sounder for analyzing the relationship between IKONOS image and sedimentary environments including topography. The boundary of the optical reflectance between mud-mixed facies and sand facies was distinct, and discrimination of the associated sandbar feature was also possible. The mud-mixed facies coupled with intricate tidal channels is confined to the relatively hi호 topography of Hwangdo tidal flat. The boundary between mud and mixed flat was indistinct in IKONOS optical reflectance but it would have a difference in the area ratio of surface remnant water. The dark area in the image represented the well developed sand facies having a lot of surface remnant water due to the relatively low surface topography. The overall accuracy of characterizing the surface sediment facies by maximum likelihood classification method was 86.2 %. These results demonstrate that high spatial resolution satellite imagery such as IKONOS coupled with knowledge of grain size, surface remnant water and tidal channel network can be effectively used to characterize the surface sedimentary facies (mud, mixed and sand) network of the tidal flat environments.

  • PDF

Unmanned AerialVehicles Images Based Tidal Flat Surface Sedimentary Facies Mapping Using Regression Kriging (회귀 크리깅을 이용한 무인기 영상 기반의 갯벌 표층 퇴적상 분포도 작성)

  • Geun-Ho Kwak;Keunyong Kim;Jingyo Lee;Joo-Hyung Ryu
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.537-549
    • /
    • 2023
  • The distribution characteristics of tidal flat sediment components are used as an essential data for coastal environment analysis and environmental impact assessment. Therefore, a reliable classification map of surface sedimentary facies is essential. This study evaluated the applicability of regression kriging to generate a classification map of the sedimentary facies of tidal flats. For this aim, various factors such as the number of field survey data and remote sensing-based auxiliary data, the effect of regression models on regression kriging, and the comparison with other prediction methods (univariate kriging and regression analysis) on surface sedimentary facies classification were investigated. To evaluate the applicability of regression kriging, a case study using unmanned aerial vehicle (UAV) data was conducted on the Hwang-do tidal flat located at Anmyeon-do, Taean-gun, Korea. As a result of the case study, it was most important to secure an appropriate amount of field survey data and to use topographic elevation and channel density as auxiliary data to produce a reliable tidal flat surface sediment facies classification map. In addition, regression kriging, which can consider detailed characteristics of the sediment distributions using ultra-high resolution UAV data, had the best prediction performance compared to other prediction methods. It is expected that this result can be used as a guideline to produce the tidal flat surface sedimentary facies classification map.

A Study on the Sedmentary Facies Change in the Tidal Flat Using High Spatial Resolution Remotely Sensed Data (고해상도 위성영상을 활용한 갯벌 퇴적상 변화 연구)

  • Choi, Jong-Kuk;Ryu, Joo-Hyung
    • Economic and Environmental Geology
    • /
    • v.44 no.1
    • /
    • pp.59-70
    • /
    • 2011
  • The surface sediment distribution in a tidal flat in 2001 was compared with that of 2008 using high spatial resolution remote sensing images and a GIS-based analysis. Maps of the surface sedimentary facies for each time frame were induced by an IKONOS data acquired in February, 2001 and a KOMPSAT-2 data acquired in April, 2008 using an object-based classification method. The area ratio of each surface sedimentary facies were estimated, and the results were compared each other for deducing the change in the sedimentary facies during the time interval. The result showed that the percentage of grains larger than very fine sand (0.0625 mm) has increased considerably since the early 2000s in the Hwangdo tidal flat. Mud flat facies has decreased 5.81 % in the late 2000s compared with the early 2000s. However, mixed flat and sand flat have increased 4.46% and 2.14%, respectively. A field campaign also supported the result. This study showed that the monitoring of changes in the surface sedimentary facies in the tidal flat is possible through a GIS-based analysis using high spatial resolution remote sensing images.

Analysis on the Sedimentary Environment and Microphytobenthos Distribution in the Geunso Bay Tidal Flat Using Remotely Sensed Data (원격탐사 자료를 이용한 근소만 갯벌 퇴적환경 및 저서미세조류 환경 분석)

  • Choi, Jong-Kuk;Ryu, Joo-Hyung;Eom, Jin-Ah;Roh, Seung-Mok;Noh, Jae-Hoon
    • Journal of Wetlands Research
    • /
    • v.12 no.3
    • /
    • pp.67-78
    • /
    • 2010
  • Surface sedimentary facies and the change of microphytobenthos distribution in Geunso Bay tidal flat were monitored using remotely sensed data. Sediment distribution was analyzed along with the spectral reflectance based on the in situ data, and the spectral characteristics of the area where microphytobenthos occupied was examined. A medium to low spatial resolution of satellite image was not suitable for the detection of the surface sediments changes in the study area due to its ambiguity in the sedimentary facies boundary, but the seasonal changes of microphytobenthos distribution could be obviously detected. However, area of predominance of sand grains and seagrass distribution could be distinctly identified from a high spatial resolution remote sensing image. From this, it is expected that KOMPSAT-2 satellite images can be applied effectively to the study on the surface sedimentary facies and detailed ecological mapping in a tidal flat.

Characteristics of Sediments in the Kanghwa Tidal Flat on the west coast of Korea (한국 서해 강화 갯벌의 퇴적물 특성)

  • Woo, Han Jun;Bahk, Jang Jun;Lee, Yeon Gyu;Je, Jong Geel;Choi, Jae Ung
    • Journal of Wetlands Research
    • /
    • v.6 no.1
    • /
    • pp.167-178
    • /
    • 2004
  • The southern tidal flat of Kanghwa Island is one of the biggest flats on the west coast of Korea. Tide is typically a semidiurnal with maximum range of about 10m. The tidal flat receives large amount of sediments from Han River system. Surface sediments for sedimentary analyses were sampled at 83 stations in the study area in August 2003. The surface sediments consisted of five sedimentary facies. Generally, sandy mud sediments dominated in the southern tidal flat of Kanghwa Island, whereas sand sediments dominated in channel and subtidal zones of the western part of Kanghwa Island. The area of sandy mud sediment extended to eastward tidal flat compared to sedimentary facies in August 1997. Sedimentary facies analysis of three core sediments from the tidal flat to the south of the Kangwha Island revealed three sedimentary facies: trough-cross-bedded sand, laminated silt, and bioturbated silt. Distribution of the facies in the cores suggested that sedimentation rates has been generally high in the margin of main tidal channel, especially in the east of the Donggeum Island. Twelve-and-half-hour anchoring survey was carried out for measurements of hydrodynamic parameters at Yeomha channel near Choji Bridge(K1) and channel near Donggeum Island(K2) in June 2003. Residual flows indicated strong ebb-dominated tidal currents. Depth-integrated net suspended sediment loads for one tidal cycle were seaward movement with 309,217.9kg/m and 128,123.1kg/m at station K1 and K2, respectively. The higher value of net suspended sediment loads at station K1 suggested that lots of suspended sediments from Han River deposited in the eastern part of tidal flat.

  • PDF

Sedimentary facies of the Cambrian Sesong Formation, Taebacksan Basin (태백산분지 캠브리아기 세송층의 퇴적상)

  • Joo, Hyun;Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.45 no.5
    • /
    • pp.565-578
    • /
    • 2012
  • Sedimentary facies of the Middle to Upper Cambrian Sesong Formation, Taebacksan Basin, are analyzed using detailed field mapping and stratigraphic section measuring. As a result, five sedimentary facies are recognized in the formation, which include lime nodule bearing shale facies, anastomosing wackestone-packstone facies, well-laminated siltstone facies, fine to medium sandstone facies and lime pebble conglomerate facies. Together with sedimentary facies analysis, study on vertical facies variation indicates that the Sesong Formation was deposited in an outer to inner shelf during relative sea-level fall. Especially, shallow marine aspects of the upper part of the Sesong Formation including 10-m-thick, fine to medium-grained sandstones appear to be very similar with the shallow marine strata accumulated during the Steptoean Stage (Dunderbergia) in Laurentia. These lithofacies comparisons of coeval strata between two continents suggest that sedimentation in the Sesong Formation reflects the influence of global sea-level fall occurred during the late Middle Cambrian to early Late Cambrian. As well, a stratigraphic discontinuity surface that may have sequence stratigraphic significance is recognized within the shallow marine sandstone beds of the uppermost Sesong Formation. This stratigraphic discontinuity surface may correspond to the Sauk II-III sequence boundary in Laurentia. Therefore, results delineated in this study will use a new stratigraphic paradigm for regional correlation of the Middle to Late Cambrian strata (e.g., the Sesong Formation) in the Taebacksan Basin, and will provide very useful information on intercontinental stratigraphic correlation in the future.

Sedimentary Facies and Environmental Changes of the Nakdong River Estuary and Adjacent Coastal Area (낙동강 하구와 주변 연안역의 표층 퇴적상 및 퇴적환경 변화)

  • KIM Seok-Yun;HA Jeong-Su
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.3
    • /
    • pp.268-278
    • /
    • 2001
  • To investigate sedimentary facies and environmental changes of the Nakdong River Estuary and its adjacent coastal area, the grain size analysis and measurement of organic matter, calcium carbonate, clay mineral and metallic elements were carried out for forty surface sediment samples. Based on regional distribution pattern and characteristics of the surface sediments, sedimentary facies in the study area can be divided into sand facies (TYPE I), mud facies (TYPE II) and sand-mud mixed facies (TYPE III). TYPE III is the transition of TYPE I and TYPE II in every aspects of sediment characteristics. It suggests that TYPE III may have been formed by the mixture of two different source of sediment : one derived from Nakdong River and the other resuspended fine-grained sediments from the Jinhae Bay by winnowing action during floods or storms. Among many aspects of environmental change after the construction of the Nakdong Barrage, the most significant is the increase of sand content off the sand barrier region. It could be explained by several reasons including decreased input of fine-grained sediment from river, increased hydrodynamic energy level off the sand barrier region and artificial effects such as dredging and dumping.

  • PDF

Depositional Characteristics and Seasonal Change of Surface Sediment and Sedimentary Strucutre on the Doowoovi Tidal Flat, Southwestern Coast of Korea (한국 서남해안 두우리 조간대에서 표층 퇴적물 및 퇴적구조의 특성과 계절변화)

  • Baek Young Suk;Chun Seungsoo
    • The Korean Journal of Petroleum Geology
    • /
    • v.10 no.1_2 s.11
    • /
    • pp.10-17
    • /
    • 2004
  • The Doowoo-ri tidal flat in the southwestern Korean coast is a typical open-coast tidal flat which has no barriers in the offshore such as barrier island and sand bars. The difference of induced wave energy with seasons is affected directly on the distribution of surface sediment and the formation of sedimentary structures because the sedimentation by wind wave is relatively much important element in this open-coast tidal flat. This open-coast tidal flat can be classified into tidal beach, intertidal flat and lower mudflat according to the pattern of geomorphology and sediment type. The intertidal flat can be again divided into 3 types: sand flat, mixed flat and mud flat based on the primary sedimentary structure and sand/mud ratio. Doowoori tidal flat shows a seasonal change in the surface sedimentary facies based on sediment composition and primary sedimentary structure. The change is closely related to the direction and magnitude of monsoon wind and also to storm frequency. In winter and spring, when northwesterly wind is most dominant and strong and also storms are common, sand-flat facies is largely distributed on the intertidal flat, whereas mud-flat facies is most dominant during summer when weak southeasterly wind is common. In the fall season, mixed-flat facies is dominant on the flat. The Doowoori intertidal flat is covered by mud sediment which is ca. 20 cm in thickness in summer season. In winter season, surface sediment is changed from mud to sand because the summer mud is mostly eroded by strong wave action. Can-core peels in the intertidal flat show that parallel laminated mud or sand/mud and climbing ripple cross-laminated sandy silt are dominant on the upper intertidal flat $(0-1.3 {\cal}km)$ during summer season. On the other hand, on lower intertidal flat $(1.7-2.3 {\cal}km)$, dominant sedimentary facies is homogeneous mud. In winter, it is changed into parallel laminated and ripple cross-laminated sand facies.

  • PDF

Sedimentary Environments in the Hwangdo Tidal Flat, Cheonsu Bay (천수만 황도 갯벌의 퇴적환경)

  • Woo, Han Jun;Choi, Jae Ung;Ryu, Joo-Hyung;Choi, Song-Hwa;Kim, Seong-Ryul
    • Journal of Wetlands Research
    • /
    • v.7 no.2
    • /
    • pp.53-67
    • /
    • 2005
  • Cheonsu bay, which is typically a semi-closed type, is characterized by various environments such as channels, sand bars, small islands and tidal flats. The construction of Seosan A and B sea dikes from 1983 to 1985 might continuously change sedimentary environments in the northern part of the bay. In order to investigate sedimentary environment, surface and core sediments were sampled at the Hwangdo tidal flat and adjacent sea in June and October 2003. The surface sediments consisted of five sedimentary facies. Generally, the surface sediments in October were changed coarser on the tidal flat and little changed in the subtidal area compared to those in June 2003. Sedimentary facies analysis of three core sediments suggested that wave and tidal current were relatively strong in the tidal flat near Hwangdo, whereas the energy was relatively low in the tidal flat near channel. Sediment accumulation rates in the Hwangdo tidal flat during 11 months indicated that sediments deposited in the central part, whereas eroded in eastern and western sides of the tidal flat. These caused that sea dike changed tidal current patterns and sediment supplies.

  • PDF