• Title/Summary/Keyword: surface seawater

Search Result 554, Processing Time 0.026 seconds

Effect of Anodizing Current Density on Anti-Corrosion Characteristics for Al2O3 Oxide Film (Al2O3 산화 피막의 내식성에 미치는 양극산화 전류밀도의 영향)

  • Lee, Seung-Jun;Jang, Seok-Gi;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.153-153
    • /
    • 2016
  • Aluminum alloys have poor corrosion resistance compared to the pure aluminum due to the additive elements. Thus, anodizing technology artificially generating thick oxide films are widely applied nowadays in order to improve corrosion resistance. Anodizing is one of the surface modification techniques, which is commercially applicable to a large surface at a low price. However, most studies up to now have focused on its commercialization with hardly any research on the assessment and improvement of the physical characteristics of the anodized films. Therefore, this study aims to select the optimum temperature of sulfuric electrolyte to perform excellent corrosion resistance in the harsh marine environment through electrochemical experiment in the sea water upon generating porous films by variating the temperatures of sulfuric electrolyte. To fabricate uniform porous film of 5083 aluminum alloy, we conducted electro-polishing under the 25 V at $5^{\circ}C$ condition for three minutes using mixed solution of ethanol (95 %) and perchloric (70 %) acid with volume ratio of 4:1. Afterward, the first step surface modification was performed using sulfuric acid as an electrolyte where the electrolyte concentration was maintained at 10 vol.% by using a jacketed beaker. For anode, 5083 aluminum alloy with thickness of 5 mm and size of $2cm{\times}2cm$ was used, while platinum electrode was used for cathode. The distance between the two was maintained at 3 cm. Afterward, the irregular oxide film that was created in the first step surface modification was removed. For the second step surface modification process (identical to the step 1), etching was performed using mixture of chromic acid (1.8 wt.%) and phosphoric acid (6 wt.%) at $60^{\circ}C$ temperature for 30 minutes. Anodic polarization test was performed at scan rate of 2 mV/s up to +3.0 V vs open circuit potential in natural seawater. Surface morphology was compared using 3D analysis microscope to observe the damage behavior. As a result, the case of surface modification presented a significantly lower corrosion current density than that without modification, indicating excellent corrosion resistance.

  • PDF

Spatial Distributions and Monthly Variations of Water Quality in Coastal Seawater of Tongyeong, Korea (통영 주변 해역 수질의 공간분포 및 월 변화 특성)

  • Lee, Young-Sik;Lim, Weol-Ae;Jung, Chang-Su;Park, Jong-Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.3
    • /
    • pp.154-162
    • /
    • 2011
  • Seawater quality was investigated each month at 30 stations near Tongyeong, South Korea, to provide data for the effective use of coastal fisheries and the reduction of economic damage to marine products. Water temperature was lowest in January and highest at the end of August. Neither extremely low water temperature below $4^{\circ}C$ nor fish damage caused by low water temperature was observed. Salinity ranged from 24.04 to 34.39 psu in the surface layer and from 29.92 to 34.39 psu in the bottom layer. The minimum salinity, attributable to rainfall events, was observed in July; salinity increased to high of about 34 psu in November. Low dissolved oxygen (DO), below 4 mg/L, was observed at Wenmun and Buksin Bays during May to October. Concentrations of $NO_2$-N, $NO_3$-N, and $PO_4$-P were low from March to September and high from October to February. Transparency was 6 m on average and was high in Wenmun Bay. Chemical oxygen demand (COD) and chlorophyll a (Chl. a) were high during summer, when the water temperature was high. With cluster analysis based on environment factors related to water quality, the study area could be divided into three main sea areas: Buksin Bay, coastal seawater, and offshore seawater. Buksin Bay was characterized by low salinity, high DO and Chl. a, and high transparency in the surface layer and by low DO and high $NH_4$-N in the bottom layer. Offshore seawater had high salinity and $NO_3$-N and low Chl. a concentration. In summer season that oyster need lots of phytoplankton, $NO_3$-N and Chl. a concentrations at this study area were low compare to Gwangy-ang and Gamak Bays. In winter, a sea squirt swallow much more than other season, the Chl. a concentrations were also low than Gwangyang and Gamak Bays.

Real-time Monitoring of Environmental Properties at Seaweed Farm and a Simple Model for CO2 Budget (해조양식장 수질환경 모니터링을 통한 이산화탄소 단순 수지모델)

  • Shim, Jeong Hee;Kang, Dong-Jin;Han, In Sung;Kwon, Jung No;Lee, Yong-Hwa
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.4
    • /
    • pp.243-251
    • /
    • 2012
  • Real-time monitoring for environmental factors(temperature, salinity, chlorophyll, etc.) and carbonate components( pH and $fCO_2$) was conducted during 5-6th of July, 2012 at a seaweeds farm in Gijang, Busan. Surface temperature and salinity were ranged from $12.5{\sim}17.6^{\circ}C$ and 33.7~34.0, respectively, with highly daily and inter-daily variations due to tide, light frequency(day and night) and currents. Surface $fCO_2$ and pH showed a range of $381{\sim}402{\mu}atm$ and 8.03~8.15, and chlorophyll-a concentration in surface seawater ranged 0.8~5.8 ${\mu}g\;L^{-1}$. Environmental and carbonate factors showed the highest/lowest values around 5 pm of 5th July when the lowest tidal height and strongest thermocline in the water column, suggesting that biological production resulted in decrease of $CO_2$ and increase of pH in the seaweed farm. Processes affecting the surface $fCO_2$ distribution were evaluated using a simple budget model. In day time, biological productions by phytoplankton and macro algae are the main factors for $CO_2$ drawdown and counteracted the amount of $CO_2$ increase by temperature and air-sea exchange. The model values were a little higher than observed values in night time due to the over-estimation of physical mixing. The model suggested that algal production accounted about 14-40% of total $CO_2$ variation in seaweed farm.

Evaluation of Heavy Metal Pollution in the Dumping Site of the Dredged Sediment, Masan Bay (마산만 오염퇴적물 준설토 투기해역의 중금속 오염평가)

  • Kwon Young-Tack
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.2
    • /
    • pp.75-81
    • /
    • 2004
  • A large amount 2.1×106 ㎥ of the polluted sediment was dredged from the Masan Bay and deposited in Gapo confined area, Masan. The dissolved metal concentrations of seawater in the dumping site (Gapo area) were observed during one tidal cycle and compared with those of seawater obtained from Jinhae Bay. The sediment was evaluated as from Non polluted to Moderately polluted by USEPA standards. It was judged that toxicological effects of sediment analyzed ranged from ERL to ERM with copper and zinc, and ERL with cadmium, chrome, lead, and nickel by the Adverse Biological Effects. The pollutant concentration was low in surface sediment compared to deeper sediment since the sediments with relatively low concentrations of pollutant were dumped to the surface. The pollutant concentration was low in surface sediment compared to deeper sediment since the sediments with relatively low concentrations of pollutant were dumped to the surface. The benthic organisms in Gapo area had higher concentrations of trace metals (Oyster: Zn 238.96, Cu 5.29 ㎍/g wet wt., Clam: Zn 17.71, Cu 1.00 ㎍/g wet wt., Mussel. Zn 187.98, Pb 0.28, Cr 0.15, Mn 4.23, Sr 1.45 and Fe 100.33 ㎍/g wet wt.) compared to outside of dumping site. However, the trace metal level in the bivalves was less than the NFPQIS (National Fisheries Products Quality Inspection Service) standard.

  • PDF

The Characteristic Analysis of Calcareous Deposit Films Formed on Steel Plate by Cathodic Current Process in Marine Environment (해양환경 중 음극전류 프로세스에 의해 강판에 형성된 석회질 피막의 특성 분석)

  • Park, Jun-Mu;Kang, Jae Wook;Choi, In-Hye;Lee, Seung-Hyo;Moon, Kyung-Man;Lee, Myeong-Hoon
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.2
    • /
    • pp.166-171
    • /
    • 2016
  • Cathodic protection is widely recognized as the most cost effective and technically appropriate corrosion prevention methodology for the port, offshore structures, ships. When applying the cathodic protection method to metal facilities in seawater, on the surface of the metal facilities a compound of calcium carbonate($CaCO_3$) or magnesium hydroxide($Mg(OH)_2$) films are formed by $Ca^{2+}$ and $Mg^{2+}$ ions among the many ionic components dissolving in the seawater. And calcareous deposit films such as $CaCO_3$ and $Mg(OH)_2$ etc. are formed by the surface of the steel product. These calcareous deposit film functions as a barrier against the corrosive environment, leading to a decrease in current demand. On the other hand, the general calcareous deposit film is a compound like ceramics. Therefore, there may be some problems such as weaker adhesive power and the longer time of film formation uniting with the base metal. In this study, we tried to determine and control the optimal condition through applying the principle of cathodic current process to form calcareous deposit film of uniform and compact on steel plate. The quantity of precipitates was analyzed, and both the morphology, component and crystal structure were analyzed as well through SEM, EDS and XRD. And based on the previous analysis, it was elucidated mechanism of calcareous deposit film formed in the sacrificial anode type (Al, Zn) and current density (1, 3, $5A/m^2$) conditions. In addition, the taping test was performed to evaluate the adhesion.

Change of Heavy Metals in the Surface Sediments of the Lake Shihwa and Its Tributaries (시화호 및 주변 하천 표층 퇴적물의 중금속 분포 변화)

  • Kim, Kyung-Tae;Kim, Eun-Soo;Cho, Sung-Rok;Park, Jun-Kun;Park, Chung-Kil
    • Ocean and Polar Research
    • /
    • v.25 no.4
    • /
    • pp.447-457
    • /
    • 2003
  • In order to understand the distribution of changes of geochemical characteristics in surface sediments according to various environmental changes around the artificial Lake Shihwa, surface sediments were sampled at $13{\sim}15$ sites form 1997 to 1999 and analyzed by C/S analyzer, ICP/MS and AAS. The average $S/C_{org}$ ratio was 0.35 in the surface sediments, which is similar to 0.36, the characteristic ratio of marine sediments. Heavy metal contents and enrichment factors in the surface sediments tended to be decreasing from the head to the mouth of the Lake Shihwa. With the deposition of fine-grained sediments in the central part of lake, anoxic water column induced the sulfides compounds with Cu, Cd and Zn. Metals such as Al, Fe, Cr, Co, Ni, Cu, Zn and Cd except for Mn and Pb showed relatively high correlation coefficients among them. The contents of Cr, Co, Ni, Cu, Zn and Cd in the surface sediments of the lake were two to five times higher than those in the lake before dike construction and also in outer part of the dike. These are mainly due to the Input of untreated industrial and municipal waste-waters into the lake, and the accumulation of heavy metals by limitation of physical mixing. Although metal contents of the surface sediments at the sites near the water-gate due to outer seawater inflow tended to be lower than those during the desalination, heavy metals were deposited in areas around the new industrial complex in the evidence of spatial distribution of heavy metals in the sediments. This is mainly due to the input of untreated waste-waters from tributaries.

Reliability analysis of laterally loaded piles for an offshore wind turbine support structure using response surface methodology

  • Kim, Sun B.;Yoon, Gil L.;Yi, Jin H.;Lee, Jun H.
    • Wind and Structures
    • /
    • v.21 no.6
    • /
    • pp.597-607
    • /
    • 2015
  • With an increasing demand of a renewable energy, new offshore wind turbine farms are being planned in some parts of the world. Foundation installation asks a significant cost of the total budget of offshore wind turbine (OWT) projects. Hence, a cost reduction from foundation parts is a key element when a cost-efficient designing of OWT budget. Mono-piles have been largely used, accounting about 78% of existing OWT foundations, because they are considered as a most economical alternative with a relatively shallow-water, less than 30 m of seawater depth. OWT design standards such as IEC, GL, DNV, API, and Eurocode are being developed in a form of reliability based limit state design method. In this paper, reliability analysis using the response surface method (RSM) and numerical simulation technique for an OWT mono-pile foundation were performed to investigate the sensitivities of mono-pile design parameters, and to find practical implications of RSM reliability analysis.

Analytical Model of Salt Budget in the Upper Indian River Lagoon, Florida USA

  • Kim, Young-Taeg
    • Ocean and Polar Research
    • /
    • v.26 no.1
    • /
    • pp.33-42
    • /
    • 2004
  • Effect of freshwater discharge on the long-term salt balance in the Northern and Central Indian River Lagoon (IRL) is successfully simulated by a new analytical solution to a water balance-based one-dimensional salt conservation equation. Sensitivity tests show that the salinity levels drop abruptly even during the dry season (November to May) due to the high surface runoff discharge caused by tropical storms, depressions, and passage of cold fronts. Increasing surface runoff and direct precipitation has risen by ten times, lowering the salinity level down to 12psu in the Northern Central zone, and to 17 psu in the Northern zone. However, the salinity level in the Southern Central zone has decreased to 25 psu. High sensitivity of the Northern Central zone to freshwater discharge can be partially explained by a rapid urbanization in this zone. During the dry season, less sensitivity of the Southern Central zone to the increased surface runoff is attributed to the proximity of the zone to the Sebastian Inlet and a strong diffusion condition possibly resulting from the seawater intrusion to the surficial aquifer at the Vero Beach. During the wet season, however, the whole study area is highly sensitive to freshwater discharge due to the weak diffusion conditions. High sensitivity of the IRL to the given diffusion conditions guarantees that the fresh-water release occurs during strong wind conditions, achieving both flood control in the drainage basin and a proper salinity regime in the IRL.

SEASONAL DISTRIBUTION OF CHLOROPHYLL-A CONCENTRATION DEDUCED FROM MODIS OCEAN COLOR DATA IN THE EDDY AREA HYUGA-NADA EAST KYUSHU SEAWATER

  • Winarso, Gathot;Hiroyuki, Kikukawa
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.475-478
    • /
    • 2006
  • Total primary production resulting from the photosynthetic process can be defined as the amount of organic matter produced in a given period of time. It is proportional to the chlorophyll-a (chl-a) values in the surface layer of the ocean. The MODIS board on Aqua satellite measures visible and infrared radiation in 36 wavebands, providing simultaneous images of chl-a concentration and sea surface temperature (SST) in the upper layer of the sea. The seasonal distribution of chl-a concentration during one year from April 2005 to March 2006 was examined. Light has a role of starting the seasonal cycle. The Kuroshio Current in this area induces many oceanographical features affecting to the change of seasonal control. The chl-a concentration is also seasonal, which is low in summer and high in winter. In summer, the meandering of Kuroshio Current induces strong eddies and increases the chl-a concentration. In autumn, the delayed small autumn bloom occurred until last December due to the Kuroshio Current. When the Kuroshio axis moves far from the coast, the coastal water dominates and increases the concentration even in the winter. The spring bloom starts early at the beginning of March and decreases during the spring.

  • PDF

Investigation of the Wing Design and Performance of a Gliding Flying Fish (글라이딩하는 날치의 날개형상 및 성능에 관한 연구)

  • Park, Hyung-Min;Choi, Hea-Cheon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.97-100
    • /
    • 2008
  • Various flyers in nature have attracted great interests with a recent need for developing versatile and small-size flight vehicles. In the present study, we focus on the flying fish which has been observed to glide a long distance just above a seawater surface. Since previous studies have depended on the field observation or measurement of the physical parameters only, quantitative data of the flying fish flight has not been provided so far. Therefore, we evaluate the wing performance of the flying fish in gliding flight by directly measuring the lift, drag and pitching moment on real flying fish models (Cypselurus hiraii) in a wind tunnel. In addition, we investigate the roles of wing morphology like the enlarged pectoral and pelvic fins, and lateral dihedral angle of pectoral fins. With both the pectoral and pelvic fins spread, the lift-to-drag ratio is larger and the longitudinal static stability is enhanced than those with the pelvic fins folded. From the glide polar, we find that the wing performance of flying fish is equivalent to those of medium-size birds like the petrel, hawk and wood duck. Finally, we examine the effect of water surface underneath the flying fish and find that the water surface reduces the drag and increases the lift-to-drag ratio.

  • PDF