• Title/Summary/Keyword: surface runoff

Search Result 659, Processing Time 0.025 seconds

Best Buffer Width of Riparian Buffer Zone using a Pilot with Different Plant Species for Reduction of Non-point Pollutant Loading (비점오염저감을 위한 수변완충지대의 적정 설계)

  • Kim, Sung-Won;Choi, I-Song;Oh, Jong-Min
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • Non-point pollution is caused by many diffusive sources, unlike a point pollution derived from industrial wastewater treatment plants or sewage treatment plants. Runoff of non-point pollutants is originated from rainfall or thawing in short period of time moving over and through the a ground surface. They cause ill effect on the quality of neighboring aquatic environment. To prevent effectively the wash off from non-point pollutant, it should be immediately reduced at the source or be treated after gathering of runoff water. This study has been carried out for the best width of riparian buffer zone. So we implemented the experiment in terms of its depth, width and kind of vegetations and calculated the reduction of pollutants loading. The experimental zone encompasses the watershed of Namhan River (Kyunggido Yangpyunggun Byungsanri). The region was divided into 5 land cover sectors : grass, reed, pussy willow, mixed(grass+pussy willow) and natural zone to compare effectiveness of vegetation. Water samples from four points have been collected in different depths. And the pollutant removal efficiency by sectors with different plant species was yielded through influent with one of each sample. And we obtained the correlation between the width of riparian buffer zone and the removal efficiency of pollutants. Using correlation result, the width of riparian buffer zones which needs to improve the water quality of river could be derived.

Application of Free Water Surface Constructed Wetland for Treating the Agricultural Runoff (강우시 농업 비점오염원 처리를 위한 FWS 인공습지의 적용성 평가)

  • Kang, Chang-Guk;Lee, So-Young;Maniquiz, Marla C.;Kim, Lee-Hyung
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.1
    • /
    • pp.83-89
    • /
    • 2010
  • The areas for agricultural purposes in Korea are decreasing every year because of urbanization. However, it is still 17.6% of the total national boundary on 2008. Most of the rice paddy fields are located near the waterbodies which require lots of water during rainy season from May to September. Also lots of nitrate and phosphate chemical fertilizers are spread on the fields every year in order to supply the nutrients for vegetation. The excess nutrients is impairs the water quality of rivers and lakes when it is washed out from the fields. The Korean Ministry of Environment (MOE) adapted the new water quality improvement program, which is the Total Daily Maximum Load, to improve the water quality and to protect the aquaecosystems. The constructed wetland is one of the possible ways to treat the agricultural runoff. The constructed wetland on this study area was constructed by MOE in 2007 to evaluate the application of the constructed wetlands. Plant growth continues to increase during the summer until it reaches its highest biomass of 6,032 g/$m^2$ in August and September. More researches about sedimentation, vegetation, water balance, etc. were performed to evaluate the removal efficiency, to find the removal mechanisms and to make the guidelines for design and maintenance.

Geographic Information System and Remote Sensing in Soil Science (GIS와 원격탐사를 활용한 토양학 연구)

  • Hong, Suk-Young;Kim, Yi-Hyun;Choe, Eun-Young;Zhang, Yong-Seon;Sonn, Yeon-Kyu;Park, Chan-Won;Jung, Kang-Ho;Hyun, Byung-Keun;Ha, Sang-Keun;Song, Kwan-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.684-695
    • /
    • 2010
  • Geographic information system (GIS) is being increasingly used for decision making, planning and agricultural environment management because of its analytical capacity. GIS and remote sensing have been combined with environmental models for many agricultural applications on monitoring of soils, agricultural water quality, microbial activity, vegetation and aquatic insect distribution. This paper introduce principles, vegetation indices, spatial data structure, spatial analysis of GIS and remote sensing in agricultural applications including terrain analysis, soil erosion, and runoff potential. National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA) has a spatial database of agricultural soils, surface and underground water, weeds, aquatic insect, and climate data, and established a web-GIS system providing spatial and temporal variability of agricultural environment information since 2007. GIS-based interactive mapping system would encourage researchers and students to widely utilize spatial information on their studies with regard to agricultural and environmental problem solving combined with other national GIS database. GIS and remote sensing will play an important role to support and make decisions from a national level of conservation and protection to a farm level of management practice in the near future.

A Study on urban runoff by deter ministic simulation techniques. (확정론적 모의기법에 의한 도시유출 해석에 관한 연구)

  • 이은영;강관원
    • Water for future
    • /
    • v.15 no.3
    • /
    • pp.37-47
    • /
    • 1982
  • In the past, the design flow of the urban storm drainage systems has been used largely on a basis of empirical and experience, and the rational formula one of empirical method has been widely used for our country, as well as world wide. But the empirical method has insufficient factor because minimal consideration is given to the relationship of the parameters in the equation to the processes being considered, and considerable use of experience and judgment in setting values to the coefficients in the equation is made. The postcomputer era of hydrology has brought an acceleration development of mathematical methods, thus mathematical models are methods which will greatly increase our understanding in hydrology. On this study, a simple mathematical model of urban presented by British Road Research Laboratory is tested on urban watersheds in Ju An Ju Gong Apartment. The basin is located in Kan Seog Dong, Inchon. The model produces a runoff hydrograph by applying rain all to only the directly connected impervious area of the basin. To apply this model the basin is divided into contributing areas or subbasins. With this information the time area for contributing is derived. The rainfall hyetograph to design storm for the basin flow has been obtained by determination of total rainfall and the temporal distribution of that rainfall determined on the basis of Huff's method form historical rainfall data of the basin. The inflows from several subbaisns are successively routed down the network of reaches from the upstream end to the outlet. A simple storage routing technique is used which involves the use of the Manning equation to compute the stage discharge curve for the cross-section in question. To apply the model to a basin, the pattern of impervious areas must be known in detail, as well as the slopes and sizes of all surface and subsurface drains.

  • PDF

Estimation of Potential Water Resources in Mega Cities in Asia

  • Takuya, Komura;Toshitsugu, Moroizumi;Kenji, Okubo;Hiroaki, Furumai;Yoshiro, Ono
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.75-81
    • /
    • 2008
  • The water shortage in mega cities in Asia, which face a rapid growth in urban population, is an outstanding problem. It is important, therefore, to accurately estimate the water balance in each city in order to use the limited water resources effectively. In this study, we estimated the potential water resources in し sixteen mega cities in Asia. The target cities were Delhi and Calcutta, India; Colombo, Sri Lanka; Dhaka, Bangladesh; Yangon, Myanmar; Bangkok, Thailand; Kuala Lumpur, Malaysia; Singapore; Jakarta, Indonesia; Hanoi, Vietnam; Beijing and Hong Kong, the People's Republic of China; Seoul, the People's Republic of Korea; Manila, the Philippines, and Sapporo and Tokyo, Japan. The potential water resources were estimated by subtracting the actual evaporation from the amount of rainfall. The actual evaporation was estimated using the potential evaporation obtained by Hamon's equation which requires the air temperature and the possible hours of sunshine. When the results of Hamon's and Penman's evaporation equations were compared, a considerable error appeared in the low latitude region. The estimation using Hamon's equation was corrected with the linear regression line of Hamon's and Penman's equations. A classification of the land cover was carried out based on satellite photographs of the target cities, and the volume of surface runoff for each city was obtained using the runoff ratios which depended on the land cover. As a result, the potential water resources in the above mega cities in Asia were found to be greater than the world average. However, the actual water resources which are available for one person to use are probably very limited.

  • PDF

Estimation of Submarine Groundwater Discharge in Il-Gwang Watershed Using Water Budget Analysis and Rn Mass Balance (물 수지 방법과 라돈 물질수지 방법을 이용한 일광유역의 해저용출수 평가)

  • Gwak, Yong-Seok;Kim, Sang-Hyun;Lee, Yong-Woo;Hamm, Se-Yeung;Kim, In-Soo;Khim, Boo-Keun
    • Journal of Environmental Science International
    • /
    • v.20 no.9
    • /
    • pp.1165-1182
    • /
    • 2011
  • The evaluation of potential submarine groundwater is an important research topic for exploring an alternative water resource. Two different approaches, water budget analysis and Rn mass balance method, were employed to investigate the annual variation of submarine groundwater discharge in 2010 at a marine watershed located at the south-eastern part of Korean Peninsula. In order to obtain reliable hydrological data during study period, temporal and spatial variations of rainfall and soil moisture had been collected and hydro-meterological data such as temperature, humidity and wind speed were collected The runoff response was simulated using SCS-CN method with spatial distributions of landuse and soil texture from GIS analysis. Six different methods were used to estimate the monthly variation of evapotranspiration and field measurements of soil moisture were used to account for the infiltration. Comparisons of infiltration and surface runoff between simulation and water balance with measurements showed coincidence. The water budget analysis and Rn mass balance method provide mean daily submarine groundwater as 5.35 and 4.07 $m^3/m/day$ in 2010, respectively.

Comparison of Non-Point Pollution Occurrence by Amount of Fertilizer Applicetion from Sandy Loam Alpine Fields which Cultivetes Poteto and Radish in Korea (감자와 무를 재배하는 사질양토 고랭지 밭의 시비량에 따른 비점오염 발생량 비교)

  • Choi, Yong Hun;Won, Chul Hee;Park, Woon Ji;Shin, Min Hwan;Shin, Jae Young;Lee, Su In;Yang, Hee Jeong;Choi, Joong Dae
    • KCID journal
    • /
    • v.19 no.1
    • /
    • pp.40-49
    • /
    • 2012
  • This study was performed to monitor the runoff of sandy soils on alpine uplands between March 2008 and December 2009, and assess non-point source pollution load. The fields were used to cultivete poteto in 2008 and radish in 2009. The fertilizers used in 200S, compared to those used in 2009, contained 2.1 times of nitrogen, 1.9 times of phosphorous, and 2.3 times of potassium. In 2008, the annual pollution load indiceted SS 2,908.47kg/ha/yr, COD 67.95kg/ha/yr, BOD 50.72kg/ha/yr, TN l3.29kg/ha/yr, and TP 9.97kg/ha/yr. In 2009, the annual pollution load indiceted SS 3,908.34kg/ha/yr, COD 225.04kg/ha/yr, BOD 156.96kg/ha/yr, TN 18.88kg/ha/yr, and TP 36.41kg/ha/yr. The amount of fertilizers used was about twice greeter in 2008, but the amounts of TN in pollution load per unit of rainfall were similar by 0.031kg/ha/mm to 0.029kg/ha/mm, whereas the amounts of COD (0.16kg/ha/mm to 0.35kg/ha/mm), BOD (0.12kg/ha/mm to 0.24kg/ha/mm), and TP (0.023kg/ha/mm to 0.057kg/ha/mm) doubled in 2009. We can infer thet the surface covering by the growth of crop mainly affected the transport of T-N through the subsurface flow to reduce non-point source pollution.

  • PDF

Groundwater Recharge Assessment via Grid-based Soil Moisture Route Modeling (격자기반의 토양수분 추적에 의한 지하수함양량 추정기법 개발)

  • Kim, Seong-Jun;Chae, Hyo-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.1
    • /
    • pp.61-72
    • /
    • 2000
  • The purpose of this study is to improve the method of evaluating groundwater recharge by using grid-based soil moisture routing technique. A model which predicts temporal variation and spatial distribution of soil moisture on a daily time step was developed. The model uses ASCII-formatted map data supported by the irregular gridded map of the GRASS(Geographic Resources Analysis Support System)-GIS and can generate daily and monthly spatial distribution map of surface runoff, soil moisture content, evapotranspiration within the watershed. The model was applied to Ipyunggyo watershed($75.6\;\textrm{km}^2$) located in the upstream of Bocheongchun watershed. Seven maps; DEM(Digital Elevation Mode]), stream, flow path, soil, land use, Thiessen network and free groundwater level, were used for input data. Predicted streamflows resulting from two years (l995, 1996) daily data were compared with the observed values at the watershed outlet. The results of temporal variations and spatial distributions of soil moisture are presented by using GRASS GIS. As a final result, the monthly predicted groundwater recharge was presented.sented.

  • PDF

Development of Adjusted Subcatchment Width Equation in SWMM (SWMM의 수정유역폭식 개발)

  • Bae, Deg-Hyo;Jang, Min-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.2
    • /
    • pp.105-115
    • /
    • 2009
  • The objectives of this study are to deduce a problem of existing subcatchment width equation in Storm Water Management Model(SWMM) and to analyze the suitability of a new adjusted subcatchment width equation on both ideally assumed watersheds and an actual urban watershed area. The problems of existing subcatchment equation are issued on the theoretical review of the equation and from the model application on different types of simplified assumed watershed. The adjusted equation, proposed in this study, that considers the pipe flows in addition to the surface flows on small subcatchment can improve the limitation of existing equation when applied on the assumed watersheds. Also, Gunja watershed with 96.3 ha is selected and collected rainfall-runoff events for the feasibility study of the proposed equation on actual urban watershed area. The results represent that the simulated flows from adjusted equation rather than the simulated flows from existing equation are well agreed with observed ones.

A METHODOLOGY TO EVALUATE THE EFFECTIVENESS OF REGIONAL SCALE FOR NON-POINT SOURCE LOADS

  • Lee, Ju-Young;Choi, Jae-Young
    • Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.194-200
    • /
    • 2006
  • Recently, the population growth, industrial and agricultural development are rapidly undergoing in the Lower Rio Grande Valley (LRGV) in Texas. The Lower Rio Grande Valley (LRGV) composed of the 4 counties and three of them are interesting for Non-point and point source pollutant modeling: Starr, Cameron, and Hidalgo. Especially, the LRGV is an intensively irrigation region, and Texas A&M University Agriculture Program and the New Mexico State University College of Agriculture applied irrigation district program, projects in GIS and Hydrology based agricultural water management systems and assessment of prioritized protecting stream network, water quality and rehabilitation based on water saving potential in Rio Grande River. In the LRGV region, where point and non-point sources of pollution may be a big concern, because increasing fertilizers and pesticides use and population cause. This project objective seeks to determine the accumulation of non-point and point source and discuss the main impacts of agriculture and environmental concern with water quality related to pesticides, fertilizer, and nutrients within LRGV region. The GIS technique is widely used and developed for the assessment of non-point source pollution in LRGV region. This project shows the losses in $kg/km^2/yr$ of BOD (Biological Oxygen Demand), TN (total Nitrogen) and TP (total phosphorus) in the runoff from the surface of LRGV. Especially, farmers in Cameron County consume a lot of fertilizer and pesticide to improve crop yield net profit. Then, this region can be created as larger nonpoint source area for nutrients and the intensity of runoff by excess irrigation water. And many sediment and used irrigation water with including high nutrients can be discharged into Rio Grade River.