• Title/Summary/Keyword: surface roughness model

Search Result 493, Processing Time 0.024 seconds

Calculation of Mixed Lubrication at Piston Ring and Cylinder Liner Interface

  • Cho, Myung-Rae;Park, Jae-Kwon;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.859-865
    • /
    • 2001
  • This paper reports on the theoretical analysis of mixed lubrication for the piston ring. The analytical model is presented by using the average flow and asperity contact model. The cyclic variations of the nominal minimum oil film thickness are obtained by numerical iterative method. The total friction is calculated by using the hydrodynamic and asperity contact theory. The effect of the roughness height, pattern, and engine speed on the nominal minimum film thickness, friction force, ad frictional power losses are investigated. As the roughness height increases, the nominal oil film thickness and total friction force increase. Also, the effect of the surface roughness on the boundary friction is dominant at low engine speed and high asperity height. The longitudinal roughness pattern shows lower mean oil film pressure and thinner oil film thickness compared to the case of the isotropic and transverse roughness patterns.

  • PDF

The influence of model surface roughness on wind loads of the RC chimney by comparing the full-scale measurements and wind tunnel simulations

  • Chen, Chern-Hwa;Chang, Cheng-Hsin;Lin, Yuh-Yi
    • Wind and Structures
    • /
    • v.16 no.2
    • /
    • pp.137-156
    • /
    • 2013
  • A wind tunnel test of a scaled-down model and field measurement were effective methods for elucidating the aerodynamic behavior of a chimney under a wind load. Therefore, the relationship between the results of the wind tunnel test and the field measurement had to be determined. Accordingly, the set-up and testing method in the wind tunnel had to be modified from the field measurement to simulate the real behavior of a chimney under the wind flow with a larger Reynolds number. It enabled the results of the wind tunnel tests to be correlated with the field measurement. The model surface roughness and different turbulence intensity flows were added to the test. The simulated results of the wind tunnel test agreed with the full-scale measurements in the mean surface pressure distribution behavior.

Prediction of the Machined Surface Roughness using Geometrical Characteristic Lines (기하학적 특징선을 이용한 밀링 가공면의 표면 조도 예측)

  • 정태성;양민양
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.66-69
    • /
    • 2003
  • This paper presents the procedures for the evaluation of the maximum surface roughness and the shapes of the cut remainder employing the ridge method. The shapes and the heights of the cut remainder are estimated by overlapping adjacent ridges in consideration of the various machining parameters: the feedrate. the path interval. The maximum surface roughness in plane cutting modes are derived as a function of the maximum effective cutter radius, R$\_$eff,max/. and the path interval ratio, $\tau$$\_$fp/, The predicted results are compared with the values estimated by the conventional roughness model.

  • PDF

EFFECT OF SURFACE ROUGHNESS ON THE ADHESION OF SILICON WAFERS PRIOR TO BONDING

  • Lee, D. H.;B. Derby
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.497-502
    • /
    • 1998
  • To understand the effect of surface roughness on silicon wafer bonding, a continuum mechanical model is presented. This model is based on Obreimoff's experiment and the contact theory of rough surfaces. The surface energy of silicon was calculated to be much reduced than the theoretical value. Problems are discussed concerning surface film effects and the assumption of constant asperity radius and statistical distribution function.

  • PDF

Study on Prediction of Surface Roughness in Hard Turning by Cutting Force (절삭력에 의한 하드터닝의 표면조도 예측에 관한 연구)

  • 이강재;양민양;하재용;이창호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1768-1771
    • /
    • 2003
  • Hard turning replaces grinding for finishing process with expectations of higher productivity and demanded surface quality. Especially for the surface roughness as surface quality demanded in finishing process of hard turning, know-how of machining characteristics of hardened materials by cutting force analysis should be accumulated in company with achievement of precision of elements and high stiffness design technology in hard turning. Considering chip formation mechanism of hardened materials, adequate cutting conditions are selected for machining experiments and cutting forces are measured according to cutting conditions. Increase of cutting forces especially thrust force and increase of dynamic instability could occur in hard turning. Analysis of dynamic characteristics of the cutting forces is executed to investigate relation between dynamic instability and surface roughness in hard turning. Investigation on effects of relative motion of machining system generated by vibration due to dynamic instability shows that ultimate surface roughness could be predicted considering relative motion of machining system with geometrical surface roughness.

  • PDF

Assessment on magnetic abrasive finishing of inclined surface and prediction model for surface roughness (경사면의 자기연마가공 특성평가 및 표면거칠기 예측모델)

  • Lee, Jung-In;Kim, Sang-Oh;Kwak, Jae-Seob
    • Design & Manufacturing
    • /
    • v.2 no.6
    • /
    • pp.11-16
    • /
    • 2008
  • In order to satisfy the customer's variant needs for a product quality in recent years, a demand for developing higher precision machining technologies in a lot of application areas such as automobile, cellular phone and semiconductor has been increased more and more. Micro-magnetic induced polishing(${\mu}-MIP$) process is one of these precision technologies. In this study, to verify the parameters' effect of the ${\mu}-MIP$ process on the surface roughness improvement of the inclined workpiece, well planned experiment which was called the design of experiments was carried out. Considered parameters were spindle speed, inductor current, abrasive configuration and working gap between the workpiece and the solid tool. As a result, it was seen that the inductor current and the working gap greatly affected the surface roughness improvement. And to predict the surface roughness of the inclined workpiece, S/N ratio and first-order response surface model was developed.

  • PDF

Experimental Study of Cutting force and Surface Roughness Prediction in MQL Tooling of Al 6061 (Al 6061 MQL 선삭가공에서 절삭력과 표면거칠기 예측에 관한 실험적 연구)

  • Hwang, Young-Kug;Chung, Won-Jee;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.6
    • /
    • pp.159-167
    • /
    • 2008
  • Cooling lubricants are used in machining operations in order to reduce friction at the tool-chip and tool-workpiece interfaces, cool both chip and tool, and remove chip. Furthermore, they influence a strong effect on the shearing mechanisms and, consequently, on the machined surface quality and tool wear. However, several researchers state that the costs related to cutting fluids is frequently higher than those related to cutting tools. Moreover, the cooling lubricants cause an increase in both worker's health and social problems related to their use and correct disposal. Therefore, many researchers have focused on the environmentally conscious machining technologies. One of the technologies is known as MQL(Minimum Quantity Lubrication) machining. In this paper, an experimental model to obtain the optimal cutting conditions in MQL turning was suggested, and the effects of cutting conditions on surface roughness and cutting force were analyzed. For these purposes, FFD (Fractional Factorial Design) and RSM (Response Surface Methods) were used for the experiment. Cutting force and surface roughness with different cutting conditions were measured through the external cylindrical turning of Al 6061 based on the experiment plan. The measured data were analyzed by regression analysis and verification experiments with random conditions were conducted to confirm the suggested experimental model.

NURBS Curve Interpolator for Controlling the Surface Roughness (표면거칠기를 고려한 NURBS 곡선보간기)

  • Choi In hugh;Jung Tae sung;Yang Min Yang;Lee Dong yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.698-706
    • /
    • 2005
  • Finish machining of a curved surface is often carried out by an NC system with curve interpolation in the field. This NURBS interpolation adopts a feedrate optimizing strategy based on both the geometrical information and dynamic properties. In case of a finish cut using a ball-end mill, the curve interpolator needs to take the machining process into account for more improved surface, while reducing the polishing time. In this study, the effect of low machinability at the bottom of a tool on surface roughness is also considered. A particular curve interpolation algorithm is proposed fur generating feedrate commands which are able to control the roughness of a curved surface. The simulation of the machined surface by the proposed algorithm was carried out, and experimental results are presented.

A Study on the Regenerative Chatter Simulation in Turning Operation (선반가공시 발생하는 채터 현상의 시뮬레이션에 관한 연구)

  • 홍민성;김종민
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.19-25
    • /
    • 2001
  • In metal cutting, chatter is an unstable cutting phenomenon which is due to the interaction of the dynamics of the chip removal process and the structural dynamics of machine tool. When chatter occurs, it reduces tool life and results in poor surface roughness and low productivity of the machining process. In this study, the experiments have been conducted to investigate phenomenon of the chatter in CNC lathe without cutting fluid. In the experiments, two accelerometers were attached at the tail stock and tool holder and the signals were caught. In order to observe the effect of chatter on the surface roughness profiles, surface roughness profiles were generated under the ideal condition and the occurrence of the chatter based on the surface simulation model using surface-shaping system. Finally, the result of experiment and simulation have been compared.

  • PDF

NURBS Interpolator for Controlling the Surface Roughness (표면 거칠기를 고려한 NURBS 보간기)

  • Choi, In-Hugh;Jung, Tea-Sung;Hong, Won-Pyo;Yang, Min-Yang
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1226-1233
    • /
    • 2003
  • Finish machining of a curved surface is often carried out by an NC system with curve interpolation in the field. This NURBS interpolation adopts a feedrate optimizing strategy based on both the geometrical information and dynamic properties. In case of a finish cut using a ball-end mill, the curve interpolator needs to take the machining process into account for more improved surface, while reducing the polishing time. In this study, the effect of low machinability at the bottom of a tool on surface roughness is also considered. A particular curve interpolation algorithm is proposed for generating feedrate commands which are able to control the roughness of a curved surface. The simulation of the machined surface by the proposed algorithm was carried out, and experimental results are presented.

  • PDF