• Title/Summary/Keyword: surface measurements

Search Result 3,046, Processing Time 0.032 seconds

Analysis of NO2 over the Korean Peninsula from Ozone Monitoring Instrument Satellite Measurements (위성 (OMI)을 활용한 한반도 지역 NO2 분석)

  • Kim, Deok-Rae;Choi, Won-Jun;Lee, Joon-Suk;Kim, Seung-Yeon;Hong, Jun-Suk;Song, Chang-Keun;Lee, Jae-Bum;Hong, You-Deog;Lee, Suk-Jo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.3
    • /
    • pp.249-260
    • /
    • 2012
  • Monitoring of climate change and atmospheric environment by satellite measurements has been increased in recent years. In this study, nitrogen dioxide ($NO_2$) measurements from Ozone Monitoring Instrument (OMI) were compared with surface measurements over the Korean peninsula. $NO_2$ from OMI measurements showed high values and also showed seasonal variations such as high concentration in winter and low in summer over metropolitan areas while $NO_2$ concentration at national background station was low and did not clearly show seasonal variations. Surface measurements showed similar temporal and spatial variations to those of satellite measurement. The comparison between satellite measurements and surface measurements showed that the correlation between them was higher in urban area (r=0.64 at Seoul and r=0.63 at Daegu) than in national background stations (r=0.37 at Jeju) because the concentration in urban area was relatively high so that the variation of $NO_2$ concentration could be detected better than at national background stations by satellite. Satellite can effectively measure the emission and transport of pollutants with no limitations in spatial coverage.

Measurements and methods for analyzing zeta potential of the external surface of hollow fiber membranes (중공사막 외부표면의 제타전위 측정방법 고찰)

  • Lee, Taeseop;Lee, Sangyoup;Lee, Joohee;Hong, Seungkwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.3
    • /
    • pp.353-362
    • /
    • 2009
  • A new method and equipment for measuring the zeta potential of the external surface of hollow fiber (HF) membranes is reported. An existing commercial streaming potential analyzer in conjunction with home-made test cells was used to determine the electrokinetic surface characteristics of various HF membranes. It was shown that measurements of the external surface of HF membrane using the home-made test cells designed in this study were easy and reliable. The zeta potential values were quite accurate and reproducible. By varying the physical shape of the test cells to adjust hydrodynamics inside the test cells, several upgrade versions of home-made test cells were obtained. It was shown that the zeta potential of the external surface of HF membranes was most influenced by membrane materials as well as the way of surface modification. However, the overall surface charge of tested HF membranes were much less than that of commercial polyamide thin-film-composite (TFC) reverse osmosis (RO) membranes due to the lack of surface functional groups. For the HF membranes with the same material, the effect of pore size on the zeta potential was not significant, implying the potential of accurate zeta potential measurements for various HF membranes. The results obtained in this study are expected to be useful for better understating of electrokinetic surface characteristics of the external surface of HF membranes.

Accuracy and Error Characteristics of SMOS Sea Surface Salinity in the Seas around Korea

  • Park, Kyung-Ae;Park, Jae-Jin
    • Journal of the Korean earth science society
    • /
    • v.41 no.4
    • /
    • pp.356-366
    • /
    • 2020
  • The accuracy of satellite-observed sea surface salinity (SSS) was evaluated in comparison with in-situ salinity measurements from ARGO floats and buoys in the seas around the Korean Peninsula, the northwest Pacific, and the global ocean. Differences in satellite SSS and in-situ measurements (SSS errors) indicated characteristic dependences on geolocation, sea surface temperature (SST), and other oceanic and atmospheric conditions. Overall, the root-mean-square (rms) errors of non-averaged SMOS SSSs ranged from approximately 0.8-1.08 psu for each in-situ salinity dataset consisting of ARGO measurements and non-ARGO data from CTD and buoy measurements in both local seas and the ocean. All SMOS SSSs exhibited characteristic negative bias errors at a range of -0.50- -0.10 psu in the global ocean and the northwest Pacific, respectively. Both rms and bias errors increased to 1.07 psu and -0.17 psu, respectively, in the East Sea. An analysis of the SSS errors indicated dependence on the latitude, SST, and wind speed. The differences of SMOS-derived SSSs from in-situ salinity data tended to be amplified at high latitudes (40-60°N) and high sea water salinity. Wind speeds contributed to the underestimation of SMOS salinity with negative bias compared with in-situ salinity measurements. Continuous and extensive validation of satellite-observed salinity in the local seas around Korea should be further investigated for proper use.

Climate change in Korea inferred from subsurface temperatures (한국의 지중온도를 이용한 기후변화연구)

  • Lee, Young-Min;Kim, Hyoung-Chan;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.442-444
    • /
    • 2006
  • On long time scale and over large areas ground surface temperatures (GSTs) track surface air temperatures (SATs). Additionally, GST changes penetrate into the subsurface and are recorded as transient temperature perturbation to the background thermal filed. Therefore, climate change can be reconstructed from borehole temperature measurements We present GST hi story reconstructed from temperature measurements in a borehole at Pocheon The result shows that GST cold period in the late 19th century and then increased by about 2K to 1990. GST history matches well with surface air temperatures measured from 1907 to 2001 at the Seoul Meteorological Station and GST history reconstructed from temperature measurements in three boreholes at Ulsan.

  • PDF

THE EFFECT OF SURFACE METEOROLOGICAL MEASUREMENTS ON GPS HEIGHT DETERMINATION

  • Huang, Yu-Wen;Wang, Chuan-Sheng;Liou, Yuei-An;Yeh, Ta-Kang
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.748-751
    • /
    • 2006
  • Positioning accuracy by the Global Positioning System (GPS) is of great concern in a variety of research tasks. It is limited due to error sources such as ionospheric effect, orbital uncertainty, antenna phase center variation, signal multipath, and tropospheric influence. In this study, the tropospheric influence, primarily due to water vapour inhomogeneity, on GPS positioning height is investigated. The data collected by the GPS receivers along with co-located surface meteorological instruments in 2003 are utilized. The GPS receivers are established as continuously operating reference stations by the Ministry of the Interior (MOI), Central Weather Bureau (CWB), and Industrial Technology Research Institute (ITRI) of Taiwan, and International GNSS Service (IGS). The total number of GPS receivers is 21. The surface meteorological measurements include temperature, pressure, and humidity. They are introduced to GPS data processing with 24 troposphere parameters for the station heights, which are compared with those obtained without a priori knowledge of surface meteorological measurements. The results suggest that surface meteorological measurements have an expected impact on the GPS height. The daily correction maximum with the meteorological effect may be as large as 9.3 mm for the cases of concern.

  • PDF

A Basic Study on the Construction of Bodice Pattern for Development Figure of Trunk Surface (상반신 체표면전개도에 의한 길원형 설계의 기초 연구)

  • 문명옥
    • Journal of the Korean Society of Costume
    • /
    • v.45
    • /
    • pp.17-28
    • /
    • 1999
  • This study was to analyze factors of the body form and factors of bodice pattern through a surface developement figure for the tight bodice pattern design. Fifty replicas of the trunk surface were made by applying a surgical tape method of female subjects between 18 and 24 years old. The result was as follows: 1. The gaps between direct measurements and measurements of the surface development figure were regarded as allowances for the tight bodice pattern. 2. There are four factors of body form selected by factor analysis. The 1st factor signifies th degree of fatness in the upper body. The 2nd factor signifies the length of the upper body. The 3rd factor signifies the part of the front shoulder. The 4th factor signifies the part of the neck. 3. There are high correlations between center back line of the surface development figure and back length line side line front length line back neck depth back upper chest depth. There are high correlations between back bust line of the surface development figure and back interscye breadth line back upper chest line back armhole line. There are high correlations between front bust line of the surface development figure and front upper chest line front interscye breadth line front armhole line front neck breadth 4. The regression expressions of measurements of the surface development figure of the upper body were analyzed as(Fig. 3).

  • PDF

Comparison of Flood Discharge and Velocity Measurements in a Mountain Stream Using Electromagnetic Wave and Surface Image (전자파와 수표면 영상을 이용한 산지하천 홍수유량 및 유속 계측 비교 연구)

  • Yang, Sung-Kee;Kim, Dong-Su;Yu, Kwon-Kyu;Kang, Meyong-Su;Jung, Woo-Yul;Lee, Jun-Ho;Kim, Yong-Seok;You, Ho-Jun
    • Journal of Environmental Science International
    • /
    • v.21 no.6
    • /
    • pp.739-747
    • /
    • 2012
  • Due to the difficulties for measuring flood discharge in the dangerous field conditions, conventional instruments with relatively low accuracy such as float still have been widely utilized for the field survey. It is also limited to use simple stage-discharge relationship for assessment of the flood discharge, since the stage-discharge relationship during the flood becomes complicated loop shape. In recent years, various non-intrusive velocity measurement techniques such as electromagnetic wave or surface images have been developed, which is quite adequate for the flood discharge measurements. However, these new non-intrusive techniques have little tested in the flood condition, though they promised efficiency and accuracy. Throughout the field observations, we evaluated the validity of these techniques by comparing discharge and velocity measurements acquired concurrently during the flood in a mountain stream. As a result, the flood discharge measurements between electromagnetic wave and surface image processing techniques showed high positive relationship, but velocities did not matched very well particularly for the high current speed more 3 m/s. Therefore, it should be noted here that special cares are required when the velocity measurements by those two different techniques are used, for instance, for the validation of the numerical models. In addition, authors assured that, for the more accurate flood discharge measurements, velocity observation as well as stage height is strongly necessary owing that the unsteady flow occurs during the flood.

A Study on the Errors in Skin Friction Measurements due to Surface Temperature Mismatch (표면온도 차이에 의한 표면마찰력 측정 오차에 대한 연구)

  • 백승욱
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.213-218
    • /
    • 2000
  • An experimental study was performed to investigate the effect of surface temperature mismatch on measurements of skin friction using a plug-type skin friction gage mounted on the side wall of a supersonic wind tunnel. The freestream Mach number was 2.4 and Reynolds number per meter was $5.25 {\times}10^7$ with total pressure of 50 psi and total temperature of 275K. Temperature mismatch between the gage surface and surrounding wall surface was generated by hot water injection using the active temperature control system. Results of the tests showed that the temperature mismatch made sizable effects on the measurements of skin friction.

  • PDF

Jet Impingement Heat Transfer on a Cylindrical Pedestal Encountered in Chip Cooling (충돌제트를 이용한 Pedestal 형상의 칩 냉각연구)

  • Lee, Dae-Hee;Lee, Joon-Sik;Chung, Young-Suk;Chung, Seung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • The heat transfer and flow measurements on a cylindrical pedestal mounted on a flat surface with a turbulent impinging jet were made. The experiments were made for the jet Reynolds number of Re = 23,000, the dimensionless nozzle-to-surface distance of L/d = 2~10, the dimensionless pedestal height of H/D = 0~1.5. Measurements of the surface temperature and the Nusselt number distributions on the plate surface were made using liquid crystal and shroud-transient technique. Flow measurements involve smoke flow visualization and the wall pressure coefficient. The results show that the wall pressure coefficient sharply decreases along the upper surface of the pedestal. However, the pressure increases when the fluid escapes from the pedestal and then collides on the plate surface. The secondary maxima in the Nusselt numbers occur in the region of 1.0 $\leq$ r/d $\leq$ 1.9. Their values for the case of H/D = 0.5 are maximum 80% higher than those for other cases. The formation of the secondary maxima may be attributed to the reattachment of flow on the plate surface which was separated at the edge of the pedestal.

Characterization of the Surface Contribution to Fluorescence Correlation Spectroscopy Measurements

  • Chowdhury, Salina A.;Lim, Man-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.583-589
    • /
    • 2011
  • Fluorescence correlation spectroscopy (FCS) is a sophisticated and an accurate analytical technique used to study the diffusion of molecules in a solution at the single-molecule level. FCS is strongly affected by many factors such as the stability of the excitation power, photochemical processes, mismatch between the refractive indices, and variations in the cover glass thickness. We have studied FCS near the surface of a cover glass by using rhodamine 123 as a fluorescent probe and have observed that the surface has a strong influence on the measurements. The temporal autocorrelation of FCS decays with two characteristic times when the confocal detection volume is positioned near the surface of the cover glass. As the position of the detection volume is moved away from the surface, the FCS autocorrelation becomes one-component decaying; the characteristic time of the decay is the same as the faster-decaying component in the FCS autocorrelation near the surface. This observation suggests that the faster component can be attributed to the free diffusion of the probe molecules in the solution, while the slow component has its origin from the interaction between the probe molecules and the surface. We have characterized the surface contribution to the FCS measurements near the surface by changing the position of the detection volume relative to the surface. The influence of the surface on the diffusion of the probe molecules was monitored by changing the chemical properties of the surface. The surface contribution to the temporal autocorrelation of the FCS strongly depends on the chemical nature of the surface. The hydrophobicity of the surface is a major factor determining the surface influence on the free diffusion of the probe molecules near the surface.