• 제목/요약/키워드: surface layer environment

검색결과 686건 처리시간 0.031초

결정질 실리콘 태양전지의 Al2O3/SiNX 패시베이션 특성 분석 (The Properties of Passivation Films on Al2O3/SiNX Stack Layer in Crystalline Silicon Solar Cells)

  • 현지연;송인설;김재은;배수현;강윤묵;이해석;김동환
    • Current Photovoltaic Research
    • /
    • 제5권2호
    • /
    • pp.63-67
    • /
    • 2017
  • Aluminum oxide ($Al_2O_3$) film deposited by atomic layer deposition (ALD) is known to supply excellent surface passivation properties on crystalline Si surface. The quality of passivation layer is important for high-efficiency silicon solar cell. double-layer structures have many advantages over single-layer materials. $Al_2O_3/SiN_X$ passivation stacks have been widely adopted for high- efficiency silicon solar cells. The first layer, $Al_2O_3$, passivates the surface, while $SiN_X$ acts as a hydrogen source that saturates silicon dangling bonds during annealing treatment. We explored the properties on passivation film of $Al_2O_3/SiN_X$ stack layer with changing the conditions. For the post annealing temperature, it was found that $500^{\circ}C$ is the most suitable temperature to improvement surface passivation.

Response of Ecosystem Carbon and Water Vapor Exchanges in Evolving Nocturnal Low-Level Jets

  • Hong, Jin-Kyu;Mathieu, Nathalie;Strachan, Ian B.;Pattey, Elizabeth;Leclerc, Monique Y.
    • Asian Journal of Atmospheric Environment
    • /
    • 제6권3호
    • /
    • pp.222-233
    • /
    • 2012
  • The nocturnal low-level jet makes a significant impact on carbon and water exchanges and turbulent mixing processes in the atmospheric boundary layer. This study reports a case study of nocturnal surface fluxes such as $CO_2$ and water vapor in the surface layer observed at a flat and homogeneous site in the presence of low-level jets (LLJs). In particular, it documents the temporal evolution of the overlying jets and the coincident response of surface fluxes. The present study highlights several factors linking the evolution of low-level jets to surface fluxes: 1) wavelet analysis shows that turbulent fluxes have similar time scales with temporal scale of LLJ evolution; 2) turbulent mixing is enhanced during the transition period of low-level jets; and 3) $CO_2$, water vapor and heat show dissimilarity from momentum during the period. We also found that LLJ activity is related not only to turbulent motions but also to the divergence of mean flow. An examination of scalar profiles and turbulence data reveal that LLJs transport $CO_2$ and water vapor by advection in the stable boundary layer, suggesting that surface fluxes obtained from the micrometeorological method such as nocturnal boundary layer budget technique should carefully interpreted in the presence of LLJs.

다기능성 나노자성복합소재 기술동향 (Technical Trend of Multi-function for Nano-magnetic Material)

  • 김유상
    • 한국표면공학회지
    • /
    • 제45권1호
    • /
    • pp.43-52
    • /
    • 2012
  • Recently, it has been developed for Eco-environment, Super light, Multi-functional nano materials. As needed mobile parts in Smart phone or TV, computer, information communication for high pass signal, multi-function, Magnetic thin film materials have been developed. As last, magnetic powder, sintered and sputtering parts were thick and low purity than electroplating layer, low pass signal and noise were resulted, vibrated TV screen. Because chemical complex temperature was high and ununiform surface layer, it has been very difficult for data pass in High Frequency (GHz) area. Large capacity data pass is used to GHz. Above GHz, signal pass velocity is dependent on Skin Effect of surface layer. If surface layer is thick or ununiform, attachment is poor, low pass signal and cross talk, noise are produced and leaked. It has been reported technical trend of Electrochemically plating and Surface treatment of Metal, Polymer, Ceramic etc. by dispersion/complex for Multi functional nano-magnetic material in this paper.

Formation of Cerium Conversion Coatings on AZ31 Magnesium Alloy

  • Fazal, Basit Raza;Moon, Sungmo
    • 한국표면공학회지
    • /
    • 제49권1호
    • /
    • pp.1-13
    • /
    • 2016
  • This review deals with one of the surface modification techniques, chemical conversion coating and particularly cerium-based conversion coatings (CeCC) as a promising substitute for chromium and phosphate conversion coating on magnesium and its alloys. The CeCCs are commonly considered environmentally friendly. The effects of surface preparation, coating thickness, bath composition, and e-paint on the corrosion behavior of CeCCs have been studied on the AZ31 magnesium alloy. This review also correlates the coating microstructural, morphological, and chemical characteristics with the processing parameters and corrosion protection. Results showed that the as-deposited coating system consists of a three layer structure (1) a nanocrystalline MgO transition layer in contact with the Mg substrate, (2) a nanocrystalline CeCC layer, and (3) an outer amorphous CeCC layer. The nanocrystalline CeCC layer thickness is a function of immersion time and cerium salt used. The overall corrosion protection was crucially dependent on the presence of coating defects. The corrosion resistance of AZ31 magnesium alloy was better for thinner CeCCs, which can be explained by the presence of fewer and smaller cracks. On the other hand, maximum corrosion protection was achieved when AZ31 magnesium samples with thin CeCCs are e-painted. The e-paint layer further restricts and hinders the movement of chloride and other aggressive ions present in the environment from reaching the magnesium surface.

기단변질형 한반도 강설 모의에 있어서 물리과정 모수화 과정의 효과 (Effects of Physical Parameterizations on the Simulation of a Snowfall Event over Korea Caused by Air-mass Transformation)

  • 설경희;홍성유
    • 대기
    • /
    • 제16권3호
    • /
    • pp.203-213
    • /
    • 2006
  • The objective of this paper is to investigate the effects of physical parameterization on the simulation of a snowfall event over Korea caused by air-mass transformation by using the PSU/NCAR MM5. A heavy snowfall event over Korea during 3-5 January 2003 is selected. In addition to the control experiments employing simple-ice microphysics scheme, MRF PBL scheme, and original surface layer process, three consequent physics sensitivity experiments are performed. Each experiment exchanges microphysics (Reisner Graupel), boundary layer (YSU PBL) schemes, and revised surface layer process with a reduced thermal roughness length for the control run. The control run reproduces an overall pattern of snowfall over Korea, but with a high bias by a factor of about 2. As revealed in the previous studies, the cloud microphysics and PBL parameterizations do not show a significant sensitivity for the case of snowfall. A more sophisticated cloud processes does not reveal a discernible effect on the simulated snowfall. Further, high bias in snowfall is exaggerated when a more realistic PBL scheme is employed. On the other hand, it is found that the revised surface layer process plays a role in improving the prediction of snowfall by reducing it. Thus, it is found that a realistic design of surface layer physics in mesoscale models is an important factor to the reduction of systematic bias of the snowfall over Korea that is caused by air-mass transformation over the Yellow sea.

Microstructural characterization of accident tolerant fuel cladding with Cr-Al alloy coating layer after oxidation at 1200 ℃ in a steam environment

  • Park, Dong Jun;Jung, Yang Il;Park, Jung Hwan;Lee, Young Ho;Choi, Byoung Kwon;Kim, Hyun Gil
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2299-2305
    • /
    • 2020
  • Zr alloy specimens were coated with Cr-Al alloy to enhance their resistance to oxidation. The coated samples were oxidized at 1200 ℃ in a steam environment for 300 s and showed extremely low oxidation when compared to uncoated Zr alloy specimens. The microstructure and elemental distribution of the oxides formed on the surface of Cr-Al alloys have been investigated by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). A very thin protective layer of Cr2O3 formed on the outer surface of the Cr-Al alloy, and a thin Al2O3 layer was also observed in the Cr-Al alloy matrix, near the surface. Our results suggest that these two oxide layers near the surface confers excellent oxidation resistance to the Cr-Al alloy. Even after exposure to a high temperature of 1200 ℃, inter-diffusion between the Cr-Al alloy and the Zr alloy occurred in very few regions near the interface. Analysis of the inter-diffusion layer by high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDS) measurement confirmed its identity as Cr2Zr.

선체 구조용 강재에 대한 Al과 Zn 아크용사코팅 층의 캐비테이션 손상 특성 (Cavitation Damage Characteristics of Al and Zn Arc Thermal Spray Coating Layers for Hull Structural Steel)

  • 박일초;김성종
    • 한국표면공학회지
    • /
    • 제49권1호
    • /
    • pp.32-39
    • /
    • 2016
  • In this study, Al and Zn arc thermal spray coatings were carried out onto the substrate of SS400 steel to improve corrosion resistance and durability of hull structural steel for ship in marine environment. Therefore cavitation-erosion test was conducted to evaluate the durability of painted and thermal spray coated specimens. And then the damaged surface morphology and weight loss were obtained to compare with each other, respectively. As a result, the painted specimen was the poorest cavitation resistance characteristics because surface damage behavior appeared to be exfoliated in bulk shape during the cavitation experiment. And Zn thermal spray coating layer presented the significant surface damage depth due to relatively low surface hardness and local cavitation damage tendency. On the other hand, as a result of the weight loss analysis, the painting layer presented the poorest cavitation resistance and the Al thermal spray coating layer relatively showed the best results after cavitation experiment.

남해 강진만 담수유입에 따른 체류시간 변화 모델링 (Modeling Variation in Residence Time Response to Freshwater Discharge in Gangjin Bay, Korea)

  • 김진호;박성은;이원찬
    • 한국수산과학회지
    • /
    • 제54권4호
    • /
    • pp.480-488
    • /
    • 2021
  • The term residence time is defined as the time taken for substances in a system to leave the system and is a useful concept to explain the physical environment characteristics of a coastal area. It is important to know the spatial characteristics of the residence time to understand the behavioral properties of pollutants generated in a marine system. In this study, the spatial distribution of average residence time was calculated for Gangjin Bay, Korea, using a hydrodynamic model including a particle tracking module. The results showed that the average residence time was about 10 days at the surface layer and about 20 days at the bottom layer. Spatially, this was the longest residence time in the southwestern sea. There was no significant difference in average residence time at the surface layer due to freshwater discharge, but spatial variation at the bottom layer was larger. The average residence time at the bottom layer decreased in the southwestern area due to freshwater discharge and increased in the northern area. This result suggests that the residence time of anthropogenic pollutants may have a large spatial difference depending on the freshwater discharge, and thus the time taken to influence cultured organisms may also vary.

2001년 5월과 6월 서태평양에서의 Thermosalinograph 관측 (Thermosalinograph Measurements in the Western Pacific Ocean in May and June, 2001)

  • 이재학;정병철;황근춘;전동철;황상철;이하웅
    • Ocean and Polar Research
    • /
    • 제24권3호
    • /
    • pp.207-213
    • /
    • 2002
  • We have analyzed sea surface temperature and salinity data collected in the western Pacific Ocean by using an automated Thermosalinograph (TSG) installed on the RV Onnuri during May - June of 2001. The TSG data exhibit characteristics of water masses distributed in the near surface layer of the cruise area very well. Especially, they reveal the diurnal surface temperature cycle and the effect of rainfall on temperature and salinity in the equatorial region, showing the effectiveness of the use of TSG. Problems to be improved for the better TSG operation are the method of water sampling and calibration of TSG sensors. Installation of a pressure gauge in the TSG system and periodical sensor calibration are strongly recommended to ensure reliability of data.

조경용 투수성 블록 포장의 열환경 특성 (Thermal Environment Characteristics of Permeable Block Pavements for Landscape Construction)

  • 한승호;류남형;강진형
    • 한국조경학회지
    • /
    • 제34권2호
    • /
    • pp.18-25
    • /
    • 2006
  • This study aims to measure and to analyze the thermal environment characteristics of the various permeable pavement materials such as grass pavement (GREEN BLOCK PARK), stone and grass pavement (GREEN BLOCK STEP), stone pavement (GREEN BLOCK MOSAIC) and wood pavement (WOOD BLOCK) under the summer outdoor environment. The thermal environment characteristics measured in the study includes the changes of surface temperature during the day, changes of the temperature on each pavement layer, and long and short wave radiation of each pavement surface. The experimental condition is based on the data on the hottest temperature (August 5, 2005, $34.0^{\circ}C$) of the you. Some of main findings are: 1) The heat environment was worse on the wood pavements than on the stone pavement. This is mainly due to the low albedo of the wood pavements (0.37) while the albedo value of stone pavements is 0.41. Small heat capacity of the wood pavements also contributes to this difference. 2) The heat environment was worse on the stone pavements than on the turf pavements. This was mainly due to the evapotranspiration of the plant growth layer of the turf pavements. 3) The peak surface temperature was the highest on the wood pavements ($56.1^{\circ}C$). The peak surface temperatures on the stone pavements, the stone-grass pavements and the grass pavements were $43.1^{\circ}C,\;40.1^{\circ}C\;and\;37.9^{\circ}C$, respectively. 4) To improve the thermal environments in the urban area, it is recommended to raise the albedo of the pavements by brightening the surface color of the pavement materials. Further studies on the pavement materials and the construction methods which can enhance the continuous evapotranspiration from the pavements surface are needed.