• Title/Summary/Keyword: surface integral

Search Result 537, Processing Time 0.026 seconds

Elastic solutions for shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface

  • Wang, Ling;Zou, Jin-Feng;Yang, Tao;Wang, Feng
    • Geomechanics and Engineering
    • /
    • v.19 no.3
    • /
    • pp.201-215
    • /
    • 2019
  • A new approach of analyzing the displacements and stress of the surrounding rock for shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface is investigated in this study. In the proposed approach, by using a virtual image technique, the shear stress of the vertical ground surface is revised to be zero, and elastic solutions of the surrounding rock are obtained before stress revision. To revise the vertical normal stress and shear stress of horizontal ground surface generated by the combined action of the actual and image sinks, the harmonic functions and corresponding stress function solutions were adopted. Based on the Boussinesq's solutions and integral method, the horizontal normal stress of the vertical ground surface is revised to be zero. Based on the linear superposition principle, the final solution of the displacements and stress were proposed by superimposing the solutions obtained by the virtual image technique and the stress revision on the horizontal and vertical ground surfaces. Furthermore, the ground settlements and lateral displacements of the horizontal and vertical ground surfaces are derived by the proposed approach. The proposed approach was well verified by comparing with the numerical method. The discussion based on the proposed approach in the manuscript shows that smaller horizontal ground settlements will be induced by lower tunnel buried depths and smaller limb distances. The proposed approach for the displacement and stress of the surrounding rocks can provide some practical information about the surrounding rock stability analysis of shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface.

A Numerical Solution Method of the Boundary Integral Equation -Axisymmetric Flow- (경계적분방정식의 수치해법 -축대칭 유동-)

  • Chang-Gu,Kang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.3
    • /
    • pp.38-46
    • /
    • 1990
  • A numerical solution method of the boundary integral equation for axisymmetric potential flows is presented. Those are represented by ring source and ring vorticity distribution. Strengths of ring source and ring vorticity are approximated by linear functions of a parameter $\zeta$ on a segment. The geometry of the body is represented by a cubic B-spline. Limiting integral expressions as the field point tends to the surface having ring source and ring vorticity distribution are derived upto the order of ${\zeta}ln{\zeta}$. In numerical calculations, the principal value integrals over the adjacent segments cancel each other exactly. Thus the singular part proportional to $\(\frac{1}{\zeta}\)$ can be subtracted off in the calculation of the induced velocity by singularities. And the terms proportional to $ln{\zeta}$ and ${\zeta}ln{\zeta}$ can be integrated analytically. Thus those are subtracted off in the numerical calculations and the numerical value obtained from the analytic integrations for $ln{\zeta}$ and ${\zeta}ln{\zeta}$ are added to the induced velocity. The four point Gaussian Quadrature formula was used to evaluate the higher order terms than ${\zeta}ln{\zeta}$ in the integration over the adjacent segments to the field points and the integral over the segments off the field points. The root mean square errors, $E_2$, are examined as a function of the number of nodes to determine convergence rates. The convergence rate of this method approaches 2.

  • PDF

Comparison of shear, tensile and shear/tensile combined bonding strengths in bracket base configurations (브라켓 기저부 형태에 따른 전단, 인장, 전단/인장복합결합강도의 비교)

  • Lee, Choon-Bong;Lee, Seong-Ho;Kim, Jong-Ghee
    • The korean journal of orthodontics
    • /
    • v.29 no.5 s.76
    • /
    • pp.599-611
    • /
    • 1999
  • The purpose of this study was to evaluate shear, tensile and shear/tensile combined bond strengths(SBS, TBS, S/TBS) in various orthodontic brackets bonded to human teeth with chemically cured adhesive (Ortho-one, Bisco, USA). Five types of metal brackets with various bracket base configurations (Micro-Loc base(Tomy, Japan), Chessboard base(Daesung, Korea), Non-Etched Foil Mesh base(Dentarum, Germany), Micro-Etched Foil Mesh base(Ortho Organiners, USA), Integral base(Unitek, USA)) were used in this study. Shear, tensile and shear/tensile combined bond strengths according to the direction of force were measured by universal testing machine. The bracket base surface after bond strength test were examined by stereoscope and scanning electron microscope. The assessment of resin remnant on bracket base surface was carried out by ARI(adhesive remnant index). The results obtained were summarized as follows, 1. In all brackets, SBS was in the greatest value(p<0.05), TBS was in 50% level and S/TBS was in 30% level of SBS. 2. In bond strength, Micro-Loc base bracket showed the maximum bond strength($SBS:22.86{\pm}1.37kgf,\;TBS:11.37{\pm}0.42kgf,\;S/TBS:6.69{\pm}0.34kgf$) and Integral base bracket showed the minimum bond strength($SBS:10.52{\pm}1.27kgf,\;TBS:4.27{\pm}1.08kgf,\;S/TBS:2.94{\pm}0.58kgf) (p<0.05). 3. In bond strength per unit area, Integral base bracket showed the minimum value, Micro-Loc base and Chessboard base brackets were in similar value(p>0.05). Non-Etched Foil Mesh base and Micro-Etched Foil Mesh base bracket were similar in SBS and TBS(p>0.05), but Micro-Etched Foil Mesh base bracket was greater than Non-Etched Foil Mesh base bracket in S/TBS(p<0.05). 4. Bond failure sites were mainly between bracket base and adhesive, therefore ARI scores were low.

  • PDF

A COMPARATIVE STUDY OF BOND STRENGTH OF RECYCLED BRACKETS (재생 브라켓의 전단접착강도에 관한 비교 연구)

  • Shur, Cheong-Hoon;Choi, Eun-Ah
    • The korean journal of orthodontics
    • /
    • v.28 no.4 s.69
    • /
    • pp.641-657
    • /
    • 1998
  • This study was undertaken to compare the bond strength and the fracture site of new and recycled brackets according to the base design. 252 sound premolars extracted for orthodontic treatment were collected and Type I, Type II, Type III brackets were divided into four groups by recycling method Each bracket was then bonded to an extracted premolar. Instron Universal Testing Machine(model W) was used to measure the shear bond strength, and the surface of the recycled brackets were viewed in SEM For the analysis of the results, one way ANOVA and Scheffe's multiple range test was executed using the SPSSWIN program. 1. The shear bond strength showed statistically significant difference according to the bracket base design(p<0.001). Type III bracket(round indentation base, micro-etched) showed the highest bond strength, Type I bracket(foil-mesh base) was second, and Type II bracket(grooved integral base, micro-etched) was last. 2. The effect of recycling on the bond strength was different according to bracket type. The shear bond strength of Type I, Type II brackets showed the smallist reduction when treated for 1 minute in Big Jane(p<0.05), but the shear bond strength of Type III brackets showed no statistically significant difference according to recycling method(p>0.05). 3. In Type I, Type II brackets, frequent fracture site was bracket-resin interface, but in Type III brackets, about half of the resin was retained on the tooth surface frequently. 4. The shear bond strength was highest when about half of the resin was retained on the tooth surface(p<0.05). 5. The resin remnant on the bracket base after recycling had no effect on the shear bond strength.

  • PDF

An Experimental Study on Condensation Heat Transfer of Low-Finned Tubes (낮은 핀관 (low-fin tube)의 응축 열전달 성능에 관한 실험적 연구)

  • Kim, N.H.;Jung, I.K.;Kim, K.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.298-309
    • /
    • 1995
  • Low-fin tubes are widely used to enhance condensation heat transfer. In this study, condensation heat transfer experiment was conducted on the low-fin tube using R-11. Three different fin densities-787 fpm (fins per meter), 1102 fpm. 1378 fpm-were tested. The results show that low-fin tube enhances the condensation heat transfer considerablely. The enhancement increases as the fin density increases. It was also found that the fin shape and height have a significant effect on the condensation heat transfer coefficient. Slender or high fins showed a higher condensing heat transfer coefficient compared with fat, low fins. For the tube with 1378 fpm, however, excessive fin height decreased the condensing heat transfer coefficient. The reason may be attributed to the increasing condensate retention angle as the fin density increases. The experimental data are compared with existing prediction models. Results show that Webb's surface tension model predicted the data best (within ${\pm}20%$), which confirms that surface tension plays the major role in low-fin tube condensation.

  • PDF

Engineering J-Integral Estimation for Internal Axial Surface Cracks in Cylinders (I) -Deformation Plasticity Based Estimation- (실린더에 존재하는 축방향 표면균열에 대한 공학적 J-적분식 (I) - 변형소성에 기초한 방법-)

  • Kim, Jin-Su;Kim, Yun-Jae;Park, Yeong-Jae;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1672-1679
    • /
    • 2002
  • This paper provides an engineering J estimation equation for cylinders with finite internal axial surfacecracks under internal pressure. The proposed equation is the J estimation equation based on deformation plasticity using Ramberg-Osgood (R-O) materials. Based on detailed 3-D FE results using deformation plasticity, plastic influence functions for fully plastic J components are tabulated for practically interesting ranges of the mean radius-to-thickness ratio, the crack depth-to-length ratio, the crack depth-to-thickness ratio. the strain hardening index for the R-O material, and the location along the semi-elliptical crack front. Based on tabilated plastic influence functions, the J estimation equation along the crack front is proposed and validated for R-O materials. Good agreements between the FE results and the proposed J estimation provide confidence in the use of the proposed method to elastic-plastic fracture mechanics of pressurized piping.

Numerical simulation of fully nonlinear sloshing waves in three-dimensional tank under random excitation

  • Xu, Gang;Hamouda, A.M.S.;Khoo, B.C.
    • Ocean Systems Engineering
    • /
    • v.1 no.4
    • /
    • pp.355-372
    • /
    • 2011
  • Based on the fully nonlinear velocity potential theory, the liquid sloshing in a three dimensional tank under random excitation is studied. The governing Laplace equation with fully nonlinear boundary conditions on the moving free surface is solved using the indirect desingularized boundary integral equation method (DBIEM). The fourth-order predictor-corrector Adams-Bashforth-Moulton scheme (ABM4) and mixed Eulerian-Lagrangian (MEL) method are used for the time-stepping integration of the free surface boundary conditions. A smoothing scheme, B-spline curve, is applied to both the longitudinal and transverse directions of the tank to eliminate the possible saw-tooth instabilities. When the tank is undergoing one dimensional regular motion of small amplitude, the calculated results are found to be in very good agreement with linear analytical solution. In the simulation, the normal standing waves, travelling waves and bores are observed. The extensive calculation has been made for the tank undergoing specified random oscillation. The nonlinear effect of random sloshing wave is studied and the effect of peak frequency used for the generation of random oscillation is investigated. It is found that, even as the peak value of spectrum for oscillation becomes smaller, the maximum wave elevation on the side wall becomes bigger when the peak frequency is closer to the natural frequency.

A Study on the Performance of Heat Transfer of Low Fin Tubes Used in Cooling of the Cutting Oil of the Machine Tool (공작기계 절삭유 냉각용 낮은 핀관의 열전달 성능에 관한 연구)

  • 조동현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.125-133
    • /
    • 1998
  • Nine tubes with trapezoidal integral-fins having fin densities from 748 to 1654fpm and 10,30 grooves and finned tubes with caves of 0.55 and 0.64mm height respectively are tested. A plain tube having same diameter as the finned tubes is also tested for comparison. In case of condensation CFC-11 condensates at saturation state of 32$^{\circ}C$ on the outside surface cooled by inside cooling water flows. And in case of boiling the refrigerant evaporates at a saturation state of 1bar on the outside tube surface and heat is supplied by hot water which circulates inside of the tube. The tube having fin density of 1299fpm and 30grooves has the best condensation overall heat transfer coefficient. However, as far as boiling heat transfer coefficient concerns, fin tubes with cave show higher value than low fin tube having fin density of 1299fpm and 30 grooves.

  • PDF

Wave propagation in a 3D fully nonlinear NWT based on MTF coupled with DZ method for the downstream boundary

  • Xu, G.;Hamouda, A.M.S.;Khoo, B.C.
    • Ocean Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.83-97
    • /
    • 2014
  • Wave propagation in a three-dimensional (3D) fully nonlinear numerical wave tank (NWT) is studied based on velocity potential theory. The governing Laplace equation with fully nonlinear boundary conditions on the moving free surface is solved using the indirect desingularized boundary integral equation method (DBIEM). The fourth-order predictor-corrector Adams-Bashforth-Moulton scheme (ABM4) and mixed Eulerian-Lagrangian (MEL) method are used for the time-stepping integration of the free surface boundary conditions. A smoothing algorithm, B-spline, is applied to eliminate the possible saw-tooth instabilities. The artificial wave speed employed in MTF (multi-transmitting formula) approach is investigated for fully nonlinear wave problem. The numerical results from incorporating the damping zone (DZ), MTF and MTF coupled DZ (MTF+DZ) methods as radiation condition are compared with analytical solution. An effective MTF+DZ method is finally adopted to simulate the 3D linear wave, second-order wave and irregular wave propagation. It is shown that the MTF+DZ method can be used for simulating fully nonlinear wave propagation very efficiently.

Analysis of Radiation Characteristics of the Shaped Cassegrainian Antenna (수정곡면 카세그레인 안테나의 복사특성 해석)

  • Ryu, Hwang;Joo, Gi-Ho
    • The Journal of Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.159-169
    • /
    • 1998
  • The purpose of this study is to analyze the radiation characteristics of the shaped Cassegrainian antenna. Radiation pattern of the sub-reflector is calculated by GTD (Geometrical Theory of Diffraction) The complete radiation patterns are obtained by summing the reflect field from the surface and the diffracted fields from the edge. The first and the second derivative on the sub-reflector are calculated by the local interpolation technique. The Radiation characteristics of the main-reflector are obtained by integrating the surface current density, which is derived from PO approximation. The radiation integral is expanded by the Jacobi-Bessel series for the purpose of reducing the computation time.

  • PDF