• 제목/요약/키워드: surface inclination

검색결과 275건 처리시간 0.018초

Angular Effect of Virtual Vertices Inserted to Treat The Boundary Edges on an Infinite Conducting Surface

  • Hwang, Ji-Hwan;Kweon, Soon-Koo;Oh, Yisok
    • Journal of electromagnetic engineering and science
    • /
    • 제13권1호
    • /
    • pp.16-21
    • /
    • 2013
  • This study presents the angular effects of virtual vertices inserted for effective treatment of the boundary edge laid on an infinite conducting surface in a half-space scattering problem. We investigated the angular effects of virtual vertices by first computing the radar cross section (RCS) of a specific scatterer; i.e., a tilted conducting plate in contact with the ground surface, by inserting the virtual vertex in half-space. Here, the electric field integral equation is used to solve this problem with various virtual vertex angles (${\theta}_{\nu}$) and conducting plate inclination angles (${\theta}_r$) ranging from $0^{\circ}$ to $180^{\circ}$. The effects of the angles ${\theta}_{\nu}$ and ${\theta}_r$ on the RCS computation are clearly shown with numerical results with and without the virtual vertices in free- and half-spaces.

A treatise on irregular shaped concrete test specimens

  • Gorkem, Selcuk Emre
    • Computers and Concrete
    • /
    • 제16권1호
    • /
    • pp.179-190
    • /
    • 2015
  • An experimental program has been carried out to investigate the effect of edge-slope on compressive strength of concrete specimens. In this study, effect of such slope was investigated by testing 100 standard cylinder specimens and 40 standard cubes. When molds are put on a slanted place, wet concrete starts to flow through the open end of mold. It keeps flowing until it reaches to a parallel surface with the place over which it was placed. That creates a sloped surface over the loading area. Experimental results revealed significant relationships between failure loads and slope of loading surface for cylinders. Angled cracks occurred in sloped cylinder specimens. Tension cracks occurred in cube specimens. Fracture mechanisms were also evaluated by using finite element analyses approach. Experiments yielded an exponential curve with bandwidth for cylinders. Average value of curve is $y={\frac{\pi}{2}}e^{-cf}$ between slope and compressive strength. Inclination is much effective parameter for cylinders than cubes.

볼 엔드밀의 헬릭스 각도에 따른 STD 11 소재의 표면 거칠기에 관한 연구 (A study on the surface roughness of STD 11 material according to the helix angle of ball endmill)

  • 김종수
    • Design & Manufacturing
    • /
    • 제17권1호
    • /
    • pp.33-39
    • /
    • 2023
  • The ball end mill is a type of cutting tool that is widely used to process complex mold shapes including aspheric surfaces. Unlike the flat end mill in which the cutting edge is formed on the cylindrical handle, the cutting edge is formed from the cylindrical handle to the hemispherical shape, which is advantageous for processing curved shapes. However, since the cutting speed continuously changes during machining due to the helix angle of the cutting edge or the machining inclination angle, it is difficult to obtain a precise machined surface. Therefore, in this paper, machining was performed while changing the helix angle of the ball end mill and the angle of the machining slope under the same cutting conditions for STD 11 material, which is widely used as a mold material. Through this, the effect of the two variables on the roughness of the machined surface was analyzed. As a result, if the helix angle was 0 degrees, it showed the best surface roughness of Ra. 0.16 ㎛. When the helix angle was 20 degrees, the best surface roughness of Ra. 0.18 ㎛ was occurred.

  • PDF

수평으로부터 약간 경사진 등온면이 저온의 순수물 속에 잠겨있을때 일어나는 자연대류 열전달 (Natural Convective Heat Transfer Adjacent to Slightly Inclined Isothermal Surface Immersed in Cold Pure Water)

  • 유갑종;엄용균
    • 대한기계학회논문집
    • /
    • 제15권3호
    • /
    • pp.1001-1010
    • /
    • 1991
  • 본 연구에서는 천이유동의 존재를 밝히고 천이영역과 경사각의 관계, 유동 및 열전달특성을 구명하고자 한다.이를 위해 유한차분방법(FDM)으로 수치해석하고 실 험결과와 비교, 검토하였다.

한국에서의 태양에너지 이용 가능성 (The Feasibility for the Use of Solar Energy in Korea)

  • 차종희;이성윤
    • 대한설비공학회지:설비저널
    • /
    • 제5권4호
    • /
    • pp.281-287
    • /
    • 1976
  • Solar Radiation is effected by the astronomical condition, the collector inclination, the air and the climate conditions before it reaches an earth surface. Based on the data which have been collected and recorded by the Central Meteorological Office and other resources, the effects of those conditions in Korea are analysed and appraised in this report.

  • PDF

여객선 세월호의 전복 요인 분석 (Analysis the factors on the capsize of passenger vessel Sewol)

  • 김정창;강일권;함상준;박치완
    • 수산해양기술연구
    • /
    • 제51권4호
    • /
    • pp.512-519
    • /
    • 2015
  • A historical tragic disaster happened by capsizing the passenger ship Sewol at South Western Sea of Korea in 16, April 2014. The ship which left Incheon harbour to bound for Jeju port passed Maengol strait and reached to approach of Byung Pung island, and then capsized and sank with a sudden inclination to the portside in the mean time of starboard the helm. In this time, the ship which has very poor stability without sufficient ballast waters and with over loading cargo listed port side caused by the centrifugal force acting to the outside of turning. A lot of cargoes not fastened moved to the port side consequently, and the ship came to beam end to capsize and sank in the end. No crews including especially captain would offer their own duties in a such extremely urgent time, as a result, enormous number of victims broke out including a lot of student. In this report, author carried out some calculation on the factors which influenced on the stability of the ship, i.e. the ship's speed, the rudder angle, the weight of cargoes and distance of movement, the surface effect of liquid in the tank. We found out that the most causes of capsize were the poor stability with heavy cargoes and insufficient amount of ballast water against the rule, and the cargoes unfastened moved one side to add the inclination as well. Above all, the owner be blamable because of the illegally operating the ship without keeping the rule.

혼합 작동 유체를 이용한 진동 세관형 히트 파이프의 압력 진동과 열전달 특성에 관한 연구 (The Study on Pressure Oscillation and Heat Transfer Characteristics of Oscillating Capillary Tube Heat Pipe Using Mixed Working Fluid)

  • 정현석;김정훈;김주원;김종수
    • 대한기계학회논문집B
    • /
    • 제26권2호
    • /
    • pp.318-327
    • /
    • 2002
  • In this paper, heat transfer and pressure oscillation characteristics on oscillating capillary tube heat pipe(OCHP) according to input heat flux, mixture ratio of working fluid and inclination angle were investigated and were compared single working fluid(R-142b) with binary mixture working fluid(R-142b-Ethano1). OCHP was made to serpentine structure of loop type with 10 turns by drilling the channels of length 220mm, width 1.5mm, and depth 1.5mm on the surface of brass plate. In this study, R-l42b and R-l42b-Ethanol were used as working fluids, the charging ratio of working fluids was 40(vol.%), the input heat flux to evaporating section was changed from 0.3W/㎠ to 1.8W/㎠, and mixture ratio of working fluid was R(100%), R(95%)-E(5%), R(90%)-E(10%), and R(85%)-E(15%). From the experimental results, it was found that the effective thermal conductivity of single working fluid was better than that of binary mixture working fluid. But, in case of binary mixture working fluid, critical heat flux was higher than that of single working fluid. And, the higher the mixture ratios of working fluid, the lower heat transfer performance. In case of pressure oscillation, as the inclination angle was lower, pressure wave was more irregular. These phenomena were more serious when the working fluid was binary mixture. Besides, when mixture ratio was higher, saturated pressure was increased, more irregular wave was observed and the mean amplitude was increased. For the same input heat flux, inclination angle and charging ratio, when pressure oscillation has sinusoidal wave, mean amplitude was small, and saturated pressure was low value, the heat transfer was excellent.

An experimental study on triaxial failure mechanical behavior of jointed specimens with different JRC

  • Tian, Wen-Ling;Yang, Sheng-Qi;Dong, Jin-Peng;Cheng, Jian-Long;Lu, Jia-wei
    • Geomechanics and Engineering
    • /
    • 제28권2호
    • /
    • pp.181-195
    • /
    • 2022
  • Roughness and joint inclination angle are the important factors that affect the strength and deformation characteristics of jointed rock mass. In this paper, 3D printer has been employed to make molds firstly, and casting the jointed specimens with different joint roughness coefficient (JRC), and different joint inclination angle (α). Conventional triaxial compression tests were carried out on the jointed specimens, and the influence of JRC on the strength and deformation parameters was analyzed. At the same time, acoustic emission (AE) testing system has been adopted to reveal the AE characteristic of the jointed specimens in the process of triaxial compression. Finally, the morphological of the joint surface was observed by digital three-dimensional video microscopy system, and the relationship between the peak strength and JRC under different confining pressures has been discussed. The results indicate that the existence of joint results in a significant reduction in the strength of the joint specimen, JRC also has great influence on the morphology, quantity and spatial distribution characteristics of cracks. With the increase of JRC, the triaxial compressive strength increase, and the specimen will change from brittle failure to ductile failure.

절토사면의 안정해석과 보강방법 (The Reinforcement Method and Stability Analysis of Cut Slopes)

  • 지인택;이달원
    • 한국농공학회지
    • /
    • 제39권1호
    • /
    • pp.112-121
    • /
    • 1997
  • The aim of this study was to analyze the slope stability relating to the failure of cut slopes and the characteristics of stress-strain relations obtained by limit equilibrium method, finite element method, and stereographic projection method for the reinforced cut slopes. The following conclusions were made : 1.To use stereographic projection method led to little possibility to take the toppling and wedge failure while to use the other methods led to the failure. It was recommended to reduce the slope inclination from 1:1 to 1: 1.5~1 :1.8 and adopt coir mesh method to protect the slope surface. position with the horizontal displacement after final excavation moved to the excavation base. The maximum shear strain values concentrated at the excavation base indicated the possibility to induce the local failure. 3. It was recommended that the slope inclination for blast rock with the slope height larger than l0m was 1: 0.5, 1:1, and 1: 1~1 :1.5 for hard rocks, soft and ordinary rocks, and ripping and soils, respectively. 4. Berm width criteria for blast rock with the slope height larger than l0m were recommended as follow : 2~3m per 20m slope height for hard rocks, 1 ~2m per l0m slope height for soft and ordinary rocks, 1 ~ l.5m per 5m slope height for ripping and soils.

  • PDF

Multi-sensor data fusion based assessment on shield tunnel safety

  • Huang, Hongwei;Xie, Xin;Zhang, Dongming;Liu, Zhongqiang;Lacasse, Suzanne
    • Smart Structures and Systems
    • /
    • 제24권6호
    • /
    • pp.693-707
    • /
    • 2019
  • This paper proposes an integrated safety assessment method that can take multiple sources data into consideration based on a data fusion approach. Data cleaning using the Kalman filter method (KF) was conducted first for monitoring data from each sensor. The inclination data from the four tilt sensors of the same monitoring section have been associated to synchronize in time. Secondly, the finite element method (FEM) model was established to physically correlate the external forces with various structural responses of the shield tunnel, including the measured inclination. Response surface method (RSM) was adopted to express the relationship between external forces and the structural responses. Then, the external forces were updated based on the in situ monitoring data from tilt sensors using the extended Kalman filter method (EKF). Finally, mechanics parameters of the tunnel lining were estimated based on the updated data to make an integrated safety assessment. An application example of the proposed method was presented for an urban tunnel during a nearby deep excavation with multiple source monitoring plans. The change of tunnel convergence, bolt stress and segment internal forces can also be calculated based on the real time deformation monitoring of the shield tunnel. The proposed method was verified by predicting the data using the other three sensors in the same section. The correlation among different monitoring data has been discussed before the conclusion was drawn.