• Title/Summary/Keyword: surface force

Search Result 4,512, Processing Time 0.032 seconds

Surface damage analysis of Head/Disk interface using AFM (AFM을 이용한 Head/Disk의 표면파손에 관한 고찰)

  • 정구현;이성창;김대은
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.357-361
    • /
    • 1997
  • In this work surface damage of head and disk of head disk drive was analysed using an Atomic Force Microscpoe. The initial damage of the disk occurred by generation of extermely small wear particles. Also it was show that wear particles tend to pile up near the front side of the slider. The surface damage mechanism of drag test and contact-start-stop test was found to be quite similar.

  • PDF

A Study on the Surface Damage between Head/Disk Interfaces by Using AFM (AFM을 이용한 Head/Disk의 표면 파손에 관한 고찰)

  • 이성창;정구현;김대은
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.167-174
    • /
    • 1998
  • In this work the surface damage of head and disk of a hard disk drive was analysed using an Atomic Force Microscope. The initial damage of the disk occurred by generation of extremely small wear particles. Also it was shown that wear particles tend to pile up near the front side of the slider. The surface damage mechanism of drag test and contact-start-stop test was found to be quite similar.

  • PDF

An Experimental Study on the Effect of Surface Roughness on Nanoscale Adhesion (표면 거칠기가 나노 응착력에 미치는 영향에 관한 실험적 연구)

  • Yang Seung Ho
    • Tribology and Lubricants
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Effect of Surface roughness on nanoscale adhesion was studied experimentally by using colloidal probe technique. Glass micro balls having the radius of $3.3\~17.4{\mu}m$ were glued at the end of AFM cantilevers to prepare colloidal probes. Adhesion force between the colloidal probe and Si-wafer was measured using pull-off force measuring method. Results showed that the measured adhesion forces are not the function of the radius of the glued balls because the ball surfaces are rough. It is also found that roughness parameters such as $R_a,\;R_q\;and\;R_{max}$ do not have important role on nanoscale adhesion. In order to find the effect of surface roughness on nanoscale adhesion, the bearing areas were extracted from the measured topography of glued balls. After normalizing the measured adhesion force with the bearing area, it was found that the normalized adhesion force kept constant as function of the radius of glued ball.

Assessment of Cutting Performance for SM45C using CNC Lathe (CNC에 의한 SM45C 선삭시 절삭성능 평가)

  • 황경충
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.104-116
    • /
    • 1998
  • This paper provides a review of the performance for SM45C using the CNC lathe. Under the constant cutting area, the tool wear for large feed rate is more than the small feed rate, and the progress goes more rapidly as the cutting speed is increased. This is caused by the friction between the workpiece and the bite. The average cutting force increases as the feedrate increases, and decreases as the cutting speed increases. This is because the effective rake/shear angle becomes smaller as the feedrate becomes larger. The higher is the cutting speed and the aspect ratio (the ratio for depth of cut to feedrate), the lower is the cutting force and the surface roughness. Also, for the optimal selection of the cutting conditions, many experimental graphical data were obtained. That is, the cutting force, the tool life, and the surface roughness were measured and investigated as the depth of cut and the feedrate changed. And the size effect was examined as the depth of the cut varied.

  • PDF

Magnetic Excitation Force of a Surface-mounted Permanent Magnet Motor due to Pole/Slot combination (SPM 모터의 극과 슬롯수 변화에 따른 전자기 가진력 특성 연구)

  • Song, Jeongyong;Kim, Doyeon;Jang, Gunhee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.321-326
    • /
    • 2013
  • This paper investigates the magnetic excitation force of a surface-mounted permanent magnet (SPM) motor according to the change of pole/slot combination. The characteristics of magnetic flux and radial magnetic force (RMF) due to pole/slot combination were analyzed by using magnetic circuit analysis. Also, the RMF of motors with the variable pole/slot combination was numerically simulated by using the finite element analysis to verify the result of the magnetic circuit analysis. This research shows that RMF ripple is reduced when the number of pole is smaller than the number of slot.

  • PDF

Cutting Force Prediction of Slanted Surface Ball-End Milling Using Cutter Contact Area (절삭영역 해석을 통한 경사면 가공에서의 볼엔드밀 절삭력 예측)

  • 김규만;조필주;황인길;주종남
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.161-167
    • /
    • 1998
  • Cutting forces in ball-end milling of slanted surfaces are calculated. The cutting area is determined from the Z-map of the surface geometry and current cutter location. The obtained cutting area is projected onto the cutter plane normal to the Z-axis and compared with cutting edge element location. Cutting force is calculated by integration of elemental cutting forces of engaged cutting edge elements. Experiments with various slanted angles were performed to verify the proposed cutting force estimation model. It is shown that the proposed method predicts cutting force effectively for any geometry including sculptured surfaces with cusp marks and surfaces with pockets and holes.

  • PDF

An Experimental Study on the Nano-adhesion of Octadecyltrichlorosilane SAM on the Si Surface (OTS SAM의 미소 응착 특성에 관한 실험적 연구)

  • 윤의성;박지현;양승호;한흥구;공호성
    • Tribology and Lubricants
    • /
    • v.17 no.4
    • /
    • pp.276-282
    • /
    • 2001
  • Nano adhesion between SPM (scanning probe microscope) tips and 075 (octadecyltrichlorosilane) SAM (self-assembled monolayer) was experimentally studied. Tests were performed to measure the nano adhesion and friction in both AFM(atomic force microscope) and LFM(lateral force microscope) modes in various conditions of relative humidity. OTS SAM was formed on Si-wafer (100) surfaces, and Si$_3$N$_4$ tips of different radius of curvature were used. When the surface was hydrophobic, the adhesion and friction forces were found lower than those of bare Si-wafer. Results also showed that micro-adhesion force increased as the relative humidity and the tip radius of curvature increased. The main parameter for affecting the micro-adhesion was found absorbed humidity on the contact surface. These results were discussed with the JKR model and a capillary force caused by absorbed water.

The effect of root canal preparation on the surface roughness of WaveOne and WaveOne Gold files: atomic force microscopy study

  • Ozyurek, Taha;Yilmaz, Koray;Uslu, Gulsah;Plotino, Gianluca
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.1
    • /
    • pp.10.1-10.8
    • /
    • 2018
  • Objectives: To examine the surface topography of intact WaveOne (WO; Dentsply Sirona Endodontics) and WaveOne Gold (WOG; Dentsply Sirona Endodontics) nickel-titanium rotary files and to evaluate the presence of alterations to the surface topography after root canal preparations of severely curved root canals in molar teeth. Materials and Methods: Forty-eight severely curved canals of extracted molar teeth were divided into 2 groups (n = 24/each group). In group 1, the canals were prepared using WO and in group 2, the canals were prepared using WOG files. After the preparation of 3 root canals, instruments were subjected to atomic force microscopy analysis. Average roughness and root mean square values were chosen to investigate the surface features of endodontic files. The data was analyzed using one-way analysis of variance and post hoc Tamhane's tests at 5% significant level. Results: The surface roughness values of WO and WOG files significantly changed after use in root canals (p < 0.05). The used WOG files exhibited higher surface roughness change when compared with the used WO files (p < 0.05). Conclusions: Using WO and WOG Primary files in 3 root canals affected the surface topography of the files. After being used in root canals, the WOG files showed a higher level of surface porosity value than the WO files.

Investigation on seismic behavior of combined retaining structure with different rock shapes

  • Lin, Yu-liang;Zhao, Lian-heng;Yang, T.Y.;Yang, Guo-lin;Chen, Xiao-bin
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.599-612
    • /
    • 2020
  • A combination of a gravity wall and an anchor beam is widely used to support the high soil deposit on rock mass. In this study, two groups of shaking table test were performed to investigate the responses of such combined retaining structure, where the rock masses were shaped with a flat surface and a curved surface, respectively. Meanwhile, the dynamic numerical analysis was carried out for a comparison or an extensive study. The results were studied and compared between the combined retaining structures with different shaped rock masses with regard to the acceleration response, the earth pressure response, and the axial anchor force. The acceleration response is not significantly influenced by the surface shape of rock mass. The earth pressure response on the combined retaining structure with a flat rock surface is more intensive than the one with a curved rock surface. The anchor force is significantly enlarged by seismic excitation with a main earthquake-induced increment at the first intensive pulse of Wenchuan motion. The value of anchor force in the combined retaining structure with a flat rock surface is generally larger than the one with a curved rock surface. Generally, the combined retaining structure with a curved rock surface presents a better seismic performance.

The Prediction of Cutting Force and Surface Topography by Dynamic Force Model in End Milling (엔드밀 가공시 동적 절삭력 모델에 의한 절삭력 및 표면형상 예측)

  • 이기용;강명창;김정석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.38-45
    • /
    • 1997
  • A new dynamic model for the cutting process inb the end milling process is developed. This model, which describes the dynamic response of the end mill, the chip load geometry including tool runout, the dependence of the cutting forces on the chip load, is used to predict the dynamic cutting force during the end milling process. In order to predict accurately cutting forces and tool vibration, the model which uses instantaneous specific cutting force, inclueds both regenerative effect and penetration effect, The model is verified through comparisons of model predicted cutting force with measured cutting force obtained from machining experiments.

  • PDF