• 제목/요약/키워드: surface fibers

검색결과 1,081건 처리시간 0.023초

Bond Properties of Nonpolar Macro Synthetic Fiber in Cement Mortar with Maleic Anhydride Grafted Polypropylene Powder (무수말레인산이 그라프트된 폴리프로필렌 분말 첨가에 따른 시멘트 모르타르와 무극성 마크로 합성섬유의 부착 특성)

  • Lee, Jin-Hyung;Park, Chan-Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제31권2A호
    • /
    • pp.137-143
    • /
    • 2011
  • This study evaluated the effects of maleic anhydride grafted polypropylene powder (mPP) contents on the bond properties of cement mortar and nonpolar macro synthetic fibers (macro synthetic fiber). Dog-bone bond tests were performed to evaluate the bond performance of macro synthetic fiber in cement mortar with varying amounts of mPP (0%, 5%, 10%, 15%, 20%, 25%, 30% of cement weight). The bond properties (pullout behavior, pullout load and interface toughness) of macro synthetic fiber in cement mortar increased as the mPP contents was increased. The bond properties increased with the mPP contents. The microstructure of macro synthetic fiber surface was examined after the pullout test to analyze the frictional resistant force according to mPP contents during the pullout process of macro synthetic fiber in cement mortar. The scratched of macro synthetic fiber increased with the mPP contents.

Preparation of 27Ni6Zr4O143M(M=Mg, Ca, Sr, or Ba)O/70 Zeolite Y Catalysts and Hydrogen-rich Gas Production by Ethanol Steam Reforming

  • Kim, Dongjin;Lee, Jun Su;Lee, Gayoung;Choi, Byung-Hyun;Ji, Mi-Jung;Park, Sun-Min;Kang, Misook
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권7호
    • /
    • pp.2073-2080
    • /
    • 2013
  • In this study the effects of adding alkaline-earth (IIA) metal oxides to NiZr-loaded Zeolite Y catalysts were investigated on hydrogen rich production by ethanol steam reforming (ESR). Four kinds of alkaline-earth metal (Mg, Ca, Sr, or Ba) oxides of 3.0% by weight were loaded between the $Ni_6Zr_4O_{14}$ main catalytic species and the microporous Zeolite Y support. The characterizations of these catalysts were examined by XRD, TEM, $H_2$-TPR, $NH_3$-TPD, and XPS. Catalytic performances during ESR were found to depend on the basicity of the added alkaline-earth metal oxides and $H_2$ production and ethanol conversion were maximized to 82% and 98% respectively in 27($Ni_6Zr_4O_{14}$)3MgO/70Zeolite Y catalyst at $600^{\circ}C$. Many carbon deposits and carbon nano fibers were seen on the surface of $30Ni_6Zr_4O_{14}$/70Zeolite Y catalyst but lesser amounts were observed on alkaline-earth metal oxide-loaded 27($Ni_6Zr_4O_{14}$)3MO/70Zeolite Y catalysts in TEM photos after ESR. This study demonstrates that hydrogen yields from ESR are closely related to the acidities of catalysts and that alkaline-earth metal oxides reduce the acidities of 27($Ni_6Zr_4O_{14}$)3MO/70Zeolite Y catalysts and promote hydrogen evolution by preventing progression to hydrocarbons.

Experimental and numerical studies of precast connection under progressive collapse scenario

  • Joshi, Digesh D.;Patel, Paresh V.;Rangwala, Husain M.;Patoliya, Bhautik G.
    • Advances in concrete construction
    • /
    • 제9권3호
    • /
    • pp.235-248
    • /
    • 2020
  • Progressive collapse in a structure occurs when load bearing members are failed and the adjoining structural elements cannot resist the redistributed forces and fails subsequently, that leads to complete collapse of structure. Recently, construction using precast concrete technology is adopted increasingly because it offers many advantages like faster construction, less requirement of skilled labours at site, reduced formwork and scaffolding, massive production with reduced amount of construction waste, better quality and better surface finishing as compared to conventional reinforced concrete construction. Connections are the critical elements for any precast structure, because in past, major collapse of precast structure took place because of connection failure. In this study, behavior of four different precast wet connections with U shaped reinforcement bars provided at different locations is evaluated. Reduced 1/3rd scale precast beam column assemblies having two span beam and three columns with removed middle column are constructed and examined by performing experiments. The response of precast connections is compared with monolithic connection, under column removal scenario. The connection region of test specimens are filled by cast-in-place micro concrete with and without polypropylene fibers. Performance of specimen is evaluated on the basis of ultimate load carrying capacity, maximum deflection at the location of removed middle column, crack formation and failure propagation. Further, Finite element (FE) analysis is carried out for validation of experimental studies and understanding the performance of structural components. Monolithic and precast beam column assemblies are modeled using non-linear Finite Element (FE) analysis based software ABAQUS. Actual experimental conditions are simulated using appropriate boundary and loading conditions. Finite Element simulation results in terms of load versus deflection are compared with that of experimental study. The nonlinear FE analysis results shows good agreement with experimental results.

Investigating the use of wollastonite micro fiber in yielding SCC

  • Sharma, Shashi Kant;Ransinchung, G.D.;Kumar, Praveen
    • Advances in concrete construction
    • /
    • 제6권2호
    • /
    • pp.123-143
    • /
    • 2018
  • Self compacting concrete (SCC) has good flowability, passability and segregation resistance because of voluminous cementitious material & high coarse aggregate to fine aggregate ratio, and high free water availability. But these factors make it highly susceptible to shrinkage. Fibers are known to reduce shrinkage in concrete mixes. Until now for conserving cement, only pozzolanic materials are admixed in concrete to yield a SCC. Hence, this study compares the use of wollastonite micro fiber (WMF), a cheap pozzolanic easily processed raw mineral fiber, and flyash in yielding economical SCC for rigid pavement. Microsilica was used as a complimentary material with both admixtures. Since WMF has large surface area ($827m^2/kg$), is acicular in nature; therefore its use in yielding SCC was dubious. Binary and ternary mixes were constituted for WMF and flyash, respectively. Paste mixes were tested for compatibility with superplasticizer and trials were performed on a normal concrete mix of flexural strength 4.5 MPa to yield SCC. Flexural strength test and restrained shrinkage test were performed on those mixes, which qualified self compacting criteria. Results revealed that WMF admixed pastes have high water demand, and comparable setting times to flyash mixes. Workability tests showed that 20% WMF with microsilica (5-7.5%) is efficient enough in achieving SCC and higher flexural strength than normal concrete at 90 days. Also, stress rate due to shrinkage was lesser and time duration for final strain was higher in WMF admixed SCC which encourages its use in yielding a SCC than pozzolanic materials.

Cross-sectional analysis of arbitrary sections allowing for residual stresses

  • Li, Tian-Ji;Liu, Si-Wei;Chan, Siu-Lai
    • Steel and Composite Structures
    • /
    • 제18권4호
    • /
    • pp.985-1000
    • /
    • 2015
  • The method of cross-section analysis for different sections in a structural frame has been widely investigated since the 1960s for determination of sectional capacities of beam-columns. Many hand-calculated equations and design graphs were proposed for the specific shape and type of sections in pre-computer age decades ago. In design of many practical sections, these equations may be uneconomical and inapplicable for sections with irregular shapes, leading to the high construction cost or inadequate safety. This paper not only proposes a versatile numerical procedure for sectional analysis of beam-columns, but also suggests a method to account for residual stress and geometric imperfections separately and the approach is applied to design of high strength steels requiring axial force-moment interaction for advanced analysis or direct analysis. A cross-section analysis technique that provides interaction curves of arbitrary welded sections with consideration of the effects of residual stress by meshing the entire section into small triangular fibers is formulated. In this study, two doubly symmetric sections (box-section and H-section) fabricated by high-strength steel is utilized to validate the accuracy and efficiency of the proposed method against a hand-calculation procedure. The effects of residual stress are mostly not considered explicitly in previous works and they are considered in an explicit manner in this paper which further discusses the basis of the yield surface theory for design of structures made of high strength steels.

Effect of Nanocellulose on the Mechanical and Self-shrinkage Properties of Cement Composites (나노셀룰로오스가 시멘트복합체의 역학적 특성 및 자기수축 특성에 미치는 영향)

  • Kim, Sun-Woo;Yoon, Byung-Tae
    • Applied Chemistry for Engineering
    • /
    • 제27권4호
    • /
    • pp.380-385
    • /
    • 2016
  • Nanocelluloses, mainly cellulose nanofibrils (CNF) and cellulose nanocrystals (CNC, i.e., defect-free, rod-like crystalline residues after acid hydrolysis of fibers), have been the subject of recent interest. Due to the presence of hydroxyl groups on the surface of nanocelluloses, their surfaces are reactive, making them suitable candidates for reinforcing materials for manufacturing polymer composites. In this study, CNF was used as a reinforcing material for manufacturing cement composites. CNF was prepared by TEMPO (2,2,6,6,-tetramethyl piperidine-1-oxyl radical) oxidation procedure combined with extensive homogenization and ultrasonication. Transmission electron microscopy (TEM) analysis of the suspension showed the width of CNF between 10 and 15 nm. The compressive strength of cement composites containing 0.5% CNF was comparable to that of conventional cement composites. On the other hand, the tensile and flexural strength were improved by 49.7% and 38.8%, respectively, compared to those of conventional cement composites. Also, at an ambient condition, the degree of self-shrinkage reduction reached to 18.9% in one day, followed by 5.9% in 28 days after molding.

Performance Evaluation of PAN Nanofiber Air Filter Fabricated by Electrospinning (전기방사에 의해 제조한 PAN 나노섬유 공기필터 성능평가)

  • Kim, Kyungcheol;Kim, Taeeun;Lee, JungKoo;Ahn, Jiwoong;Park, Sungho;Kim, Hyungman
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제39권11호
    • /
    • pp.885-890
    • /
    • 2015
  • Nanomaterials possess unique mechanical, physical, and chemical properties. They are small, and have an ultrahigh surface area, making them suitable for air filter applications. Electrospinning has been recognized as an efficient technique for fabricating polymer nanofibers. In order to determine the optimum manufacturing conditions, the effects of several electrospinning process parameters on the diameter, orientation, and distribution of polyacrylonitrile (PAN) nanofiber are analyzed. To improve interlaminar fracture toughness and suppress delamination in the form of laminated non-woven fibers by using a heat roller, the performances of filter efficiency and pressure drop achieved with PAN nanofiber air filter are evaluated experimentally.

Studies on Seasonal Variation of Linerboard Strength (I) - Effect of Pulping Temperature of OCC on Strength- (계절에 따른 골판지 원지의 강도변화에 대한 연구 (1) - OCC의 해리온도가 강도에 미치는 영향 -)

  • Lee, Kwang Seob;Pak, Yell Rim;O, Jun;Jo, Woo Sang;Jo, Ik Jeong;Ryu, Jeong Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • 제48권3호
    • /
    • pp.91-98
    • /
    • 2016
  • Linerboards have been produced by recycling recovered paper such as old corrugated containers(OCC). Usually linerboards produced during summer season show weak strength compared with those of produced during winter. In order to cope with the weak strength of linerboards produced during summer, and to confirm uniform quality, it is important to understand the seasonal effect on strength properties. Effect of pulping temperature of the OCC for linearboard production was investigated by controlling pulping temperatures at $18^{\circ}C$ and $51^{\circ}C$. Low pulping temperature ($18^{\circ}C$) caused more generation of fines in stock. Consequently retention and drainage of linerboard defibrated at high pulping temperature ($51^{\circ}C$) were better than those of $18^{\circ}C$. Strength properties of handsheet at low pulping temperature were higher than those of high pulping temperature and it could be confirmed that low pulping temperature during winter is one reason of seasonal variation of recycled linerboard strength. It is considered that surface modification of OCC fibers by harsh pulping action during winter caused increase of paper strength.

Electrodiagnostic study of Sympathetic Skin Response on Normal Korean Subjects

  • Kim, Dae-Sik;Yoo, Jong-Kyun;Kim, Byung-Weon
    • Proceedings of the KAIS Fall Conference
    • /
    • 한국산학기술학회 2009년도 추계학술발표논문집
    • /
    • pp.501-504
    • /
    • 2009
  • Sympathetic skin response (SSR) is defined as a minute change of skin potential after electrical stimulation. This test measures the change in voltage that originates from the surface of the skin and is attributed to sudomotor activity. The aim of this study was to define the criteria for validation of the responses. 40 normal subjects (20-73 years of age) with non-sympathetic dysfunction were tested and SSR was generated form all subjects. SSR latency was 1331.22${\pm}$177.51ms in the right palm, 1331.74${\pm}$156.42ms in the left palm, 1851.79${\pm}$220.99ms in the right sole, and 1874.10${\pm}$215.01ms in the left sole. And SSR amplitude was 595.83${\pm}$221.16${\mu}$V in the right palm, 605.33${\pm}$226.45${\mu}$V in the left palm, 291.76${\pm}$133.36${\mu}$V in the right sole, and 288.77${\pm}$129.70${\mu}$ V in the left sole. SSR latency and amplitude had no significantly difference between the right and the left side. SSR latency was consistently shorter (p<0.001) and SSR amplitude higher (p<0.001) in feet than in hands. SSR waveforms were P-type (32 subjects, 75%) and N-type (8 subjects, 25%), respectively. The SSR latency and amplitude in palms/soles were closely correlated with age (p<0.05) and height (p<0.05). The SSR test is one of methods assessing impairment of sympathetic fibers in peripheral neuropathy as well as a disorder of sympathetic system in other diseases and so our results from normal healthy subjects can be used as clinical criteria for SSR test.

  • PDF

Wound healing effects of paste type acellular dermal matrix subcutaneous injection

  • Lee, Jin Ho;Kim, Jae-Won;Lee, Jun-Ho;Chung, Kyu Jin;Kim, Tae Gon;Kim, Yong-Ha;Kim, Keuk-Jun
    • Archives of Plastic Surgery
    • /
    • 제45권6호
    • /
    • pp.504-511
    • /
    • 2018
  • Background Acellular dermal matrix (ADM) helps wound healing by stimulating angiogenesis, acting as a chemoattractant for endothelial cells, providing growth factors, and permitting a substrate for fibroblasts to attach. The current standard for using paste-type ADM (CG Paste) in wound healing is direct application over the wounds. The major concerns regarding this method are unpredictable separation from the wounds and absorption into negative-pressure wound therapy devices. This study aimed to investigate the effects of subcutaneous injection of paste-type ADM on wound healing in rats. Methods Full-thickness skin defects were created on the dorsal skin of rats. Eighteen rats were randomly divided into three groups and treated using different wound coverage methods: group A, with a saline dressing; group B, standard application of CG Paste; and group C, injection of CG Paste. On postoperative days 3, 5, 7, 10, and 14, the wound areas were analyzed morphologically. Histological and immunohistochemical tissue analyses were performed on postoperative days 3 and 7. Results Groups B and C had significantly less raw surface than group A on postoperative days 10 and 14. Collagen fiber deposition and microvessel density were significantly higher in group C than in groups A and B on postoperative days 3 and 7. Conclusions This study showed comparable effectiveness between subcutaneous injection and the conventional dressing method of paste-type ADM. Moreover, the injection of CG Paste led to improved wound healing quality through the accumulation of collagen fibers and an increase in microvessel density.