• Title/Summary/Keyword: surface error

Search Result 2,010, Processing Time 0.034 seconds

A Study on the Estimation of Monthly Average River Basin Evaporation (월(月) 평균유역증발산량(平均流域蒸發散量) 추정(推定)에 관(關)한 연구(硏究))

  • Kim, Tai Cheol;Ahn, Byoung Gi
    • Korean Journal of Agricultural Science
    • /
    • v.8 no.2
    • /
    • pp.195-202
    • /
    • 1981
  • The return of water to the atmosphere from water, soil and vegetation surface is one of the most important aspects of hydrological cycle, and the seasonal trend of variation of river basin evaporation is also meaningful in the longterm runoff analysis for the irrigation and water resources planning. This paper has been prepared to show some imformation to estimate the monthly river basin evaporation from pan evaporation, potential evaporation, regional evaporation and temperature through the comparison with river basin evaporation derived from water budget method. The analysis has been carried out with the observation data of Yongdam station in the Geum river basin for five year. The results are summarized as follows and these would be applied to the estimation of river basin evaporation and longterm runoff in ungaged station. 1. The ratio of pan evaporation to river basin evaporation ($E_w/E_{pan}$) shows the most- significant relation at the viewpoint of seasonal trend of variation. River basin evaporation could be estimated from the pan evaporation through either Fig. 9 or Table-7. 2. Local coefficients of cloudness effect and wind function has been determined to apply the Penman's mass and energy transfer equation to the estimation of river basin evaporation. $R_c=R_a(0.13+0.52n/D)$ $E=0.35(e_s-e)(1.8+1.0U)$ 3. It seems that Regional evaporation concept $E_R=(1-a)R_C-E_p$ has kept functional errors due to the inapplicable assumptions. But it is desirable that this kind of function which contains the results of complex physical, chemical and biological processes of river basin evaporation should be developed. 4. Monthly river basin evaporation could be approximately estimated from the monthly average temperature through either the equation of $E_w=1.44{\times}1.08^T$ or Fig. 12 in the stations with poor climatological observation data.

  • PDF

Hydrological Drought Assessment and Monitoring Based on Remote Sensing for Ungauged Areas (미계측 유역의 수문학적 가뭄 평가 및 감시를 위한 원격탐사의 활용)

  • Rhee, Jinyoung;Im, Jungho;Kim, Jongpil
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.525-536
    • /
    • 2014
  • In this study, a method to assess and monitor hydrological drought using remote sensing was investigated for use in regions with limited observation data, and was applied to the Upper Namhangang basin in South Korea, which was seriously affected by the 2008-2009 drought. Drought information may be obtained more easily from meteorological data based on water balance than hydrological data that are hard to estimate. Air temperature data at 2 m above ground level (AGL) were estimated using remotely sensed data, evapotranspiration was estimated from the air temperature, and the correlations between precipitation minus evapotranspiration (P-PET) and streamflow percentiles were examined. Land Surface Temperature data with $1{\times}1km$ spatial resolution as well as Atmospheric Profile data with $5{\times}5km$ spatial resolution from MODIS sensor on board Aqua satellite were used to estimate monthly maximum and minimum air temperature in South Korea. Evapotranspiration was estimated from the maximum and minimum air temperature using the Hargreaves method and the estimates were compared to existing data of the University of Montana based on Penman-Monteith method showing smaller coefficient of determination values but smaller error values. Precipitation was obtained from TRMM monthly rainfall data, and the correlations of 1-, 3-, 6-, and 12-month P-PET percentiles with streamflow percentiles were analyzed for the Upper Namhan-gang basin in South Korea. The 1-month P-PET percentile during JJA (r = 0.89, tau = 0.71) and SON (r = 0.63, tau = 0.47) in the Upper Namhan-gang basin are highly correlated with the streamflow percentile with 95% confidence level. Since the effect of precipitation in the basin is especially high, the correlation between evapotranspiration percentile and streamflow percentile is positive. These results indicate that remote sensing-based P-PET estimates can be used for the assessment and monitoring of hydrological drought. The high spatial resolution estimates can be used in the decision-making process to minimize the adverse impacts of hydrological drought and to establish differentiated measures coping with drought.

Numerical Simulation of the Formation of Oxygen Deficient Water-masses in Jinhae Bay (진해만의 빈산소 수괴 형성에 관한 수치실험)

  • CHOI Woo-Jeung;PARK Chung-Kill;LEE Suk-Mo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.4
    • /
    • pp.413-433
    • /
    • 1994
  • Jinhae Bay once was a productive area of fisheries. It is, however, now notorious for its red tides; and oxygen deficient water-masses extensively develop at present in summer. Therefore the shellfish production of the bay has been decreasing and mass mortality often occurs. Under these circumstances, the three-dimensional numerical hydrodynamic and the material cycle models, which were developed by the Institute for Resources and Environment of Japan, were applied to analyze the processes affecting the oxygen depletion and also to evaluate the environment capacity for the reception of pollutant loads without dissolved oxygen depletion. In field surveys, oxygen deficient water-masses were formed with concentrations of below 2.0mg/l at the bottom layer in Masan Bay and the western part of Jinhae Bay during the summer. Current directions, computed by the $M_2$ constituent, were mainly toward the western part of Jinhae Bay during flood flows and in opposite directions during ebb flows. Tidal currents velocities during the ebb tide were stronger than that of the flood tide. The comparision between the simulated and observed tidal ellipses showed fairly good agreement. The residual currents, which were obtained by averaging the simulated tidal currents over 1 tidal cycle, showed the presence of counterclockwise eddies in the central part of Jinhae Bay. Density driven currents were generated southward at surface and northward at the bottom in Masan Bay and Jindong Bay, where the fresh water of rivers entered. The material cycle model was calibrated with the data surveyed in the field of the study area from June to July, 1992. The calibrated results are in fairly good agreement with measured values within relative error of $28\%$. The simulated dissolved oxygen distributions of bottom layer were relatively high with the concentration of $6.0{\sim}8.0mg/l$ at the boundaries, but an oxygen deficient water-masses were formed within the concentration of 2.0mg/l at the inner part of Masan Bay and the western part of Jinhae Bay. The results of sensitivity analyses showed that sediment oxygen demand(SOD) was one of the most important influence on the formation of oxygen depletion. Therefore, to control the oxygen deficient water-masses and to conserve the coastal environment, it is an effective method to reduce the SOD by improving the polluted sediment. As the results of simulations, in Masan Bay, oxygen deficient water-masses recovered to 5.0mg/l when the $50\%$ reduction in input COD loads from Masan basin and $70\%$ reduction in SOD was conducted. In the western part of Jinhae Bay, oxygen deficient water-masses recovered to 5.0mg/l when the $95\%$ reduction in SOD and $90\%$ reduction in culturing ground fecal loads was conducted.

  • PDF

Monitoring of Atmospheric Aerosol using GMS-5 Satellite Remote Sensing Data (GMS-5 인공위성 원격탐사 자료를 이용한 대기 에어러솔 모니터링)

  • Lee, Kwon Ho;Kim, Jeong Eun;Kim, Young Jun;Suh, Aesuk;Ahn, Myung Hwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.2
    • /
    • pp.1-15
    • /
    • 2002
  • Atmospheric aerosols interact with sunlight and affect the global radiation balance that can cause climate change through direct and indirect radiative forcing. Because of the spatial and temporal uncertainty of aerosols in atmosphere, aerosol characteristics are not considered through GCMs (General Circulation Model). Therefor it is important physical and optical characteristics should be evaluated to assess climate change and radiative effect by atmospheric aerosols. In this study GMS-5 satellite data and surface measurement data were analyzed using a radiative transfer model for the Yellow Sand event of April 7~8, 2000 in order to investigate the atmospheric radiative effects of Yellow Sand aerosols, MODTRAN3 simulation results enable to inform the relation between satellite channel albedo and aerosol optical thickness(AOT). From this relation AOT was retreived from GMS-5 visible channel. The variance observations of satellite images enable remote sensing of the Yellow Sand particles. Back trajectory analysis was performed to track the air mass from the Gobi desert passing through Korean peninsular with high AOT value measured by ground based measurement. The comparison GMS-5 AOT to ground measured RSR aerosol optical depth(AOD) show that for Yellow Sand aerosols, the albedo measured over ocean surfaces can be used to obtain the aerosol optical thickness using appropriate aerosol model within an error of about 10%. In addition, LIDAR network measurements and backward trajectory model showed characteristics and appearance of Yellow Sand during Yellow Sand events. These data will be good supporting for monitoring of Yellow Sand aerosols.

  • PDF

Analysis of Growth Response by Non - destructive, Continuous Measurement of Fresh Weight in Leaf Lettuce 1. Effect of Nutrient Solution and Light Condition on the Growth of Leaf Lettuce (비파괴 연속 생체중 측정장치의 개발 및 이에 의한 상추의 생장반응 분석 l. 양액의 이온 농도 및 명ㆍ암 처리가 생장에 미치는 영향)

  • 남윤일;채제천
    • Journal of Bio-Environment Control
    • /
    • v.4 no.1
    • /
    • pp.50-58
    • /
    • 1995
  • These studies were carried out to develop a system for non -destructive and continuous measurement of fresh weight and to analyse the growth response of leaf lettuce under the different nutrient solution and light condition with this system. The developed measurement system was consisted of four load cells and a microcomputer. The output from the system was highly positive correlation with the plant fresh weight above the surface of the hydroponic solution. The top fresh weight of plant could be measured within the error $\pm$ 1.0g in the range of 0 - 2000g. The top fresh weight of leaf lettuce increased 44 times at 18th day after transferring to the nutrient solution, and the maximum growth rate was observed at 13th day after transferring. The growth rate was 10.7- 29.6% per day during 18 days. Optimum concentration of the nutrient solution for the growth of lettuce was 1.4 - 2.2 mS/cm of EC level. When the light condition was changed from dark to light, the fresh weight was temporarily decreased, but the fresh weight increased under the opposite condition. Top fresh weight of leaf lettuce in the darkness normally increased within 12 hours after darkness treatment, and then slowly increased until 78 hours under continuous dark condition. After that times, the fresh weight began to decrease.

  • PDF

PCA­based Waveform Classification of Rabbit Retinal Ganglion Cell Activity (주성분분석을 이용한 토끼 망막 신경절세포의 활동전위 파형 분류)

  • 진계환;조현숙;이태수;구용숙
    • Progress in Medical Physics
    • /
    • v.14 no.4
    • /
    • pp.211-217
    • /
    • 2003
  • The Principal component analysis (PCA) is a well-known data analysis method that is useful in linear feature extraction and data compression. The PCA is a linear transformation that applies an orthogonal rotation to the original data, so as to maximize the retained variance. PCA is a classical technique for obtaining an optimal overall mapping of linearly dependent patterns of correlation between variables (e.g. neurons). PCA provides, in the mean-squared error sense, an optimal linear mapping of the signals which are spread across a group of variables. These signals are concentrated into the first few components, while the noise, i.e. variance which is uncorrelated across variables, is sequestered in the remaining components. PCA has been used extensively to resolve temporal patterns in neurophysiological recordings. Because the retinal signal is stochastic process, PCA can be used to identify the retinal spikes. With excised rabbit eye, retina was isolated. A piece of retina was attached with the ganglion cell side to the surface of the microelectrode array (MEA). The MEA consisted of glass plate with 60 substrate integrated and insulated golden connection lanes terminating in an 8${\times}$8 array (spacing 200 $\mu$m, electrode diameter 30 $\mu$m) in the center of the plate. The MEA 60 system was used for the recording of retinal ganglion cell activity. The action potentials of each channel were sorted by off­line analysis tool. Spikes were detected with a threshold criterion and sorted according to their principal component composition. The first (PC1) and second principal component values (PC2) were calculated using all the waveforms of the each channel and all n time points in the waveform, where several clusters could be separated clearly in two dimension. We verified that PCA-based waveform detection was effective as an initial approach for spike sorting method.

  • PDF

A Localized Secular Variation Model of the Geomagnetic Field Over Northeast Asia Region between 1997 to 2011 (지역화된 동북아시아지역의 지구자기장 영년변화 모델: 1997-2011)

  • Kim, Hyung Rae
    • Economic and Environmental Geology
    • /
    • v.48 no.1
    • /
    • pp.51-63
    • /
    • 2015
  • I produced a secular variation model of geomagnetic field by using the magnetic component data from four geomagnetic observatories located in Northeast Asia during the years between 1997 and 2011. The Earth's magnetic field varies with time and location due to the dynamics of fluid outer core and the magnetic observatories on the surface measure in time series. To adequately represent the magnetic field or secular variations of the Earth, a spatio-temporal model is required. In making a global model, satellite observations as well as limited observatory data are necessary to cover the regions and time intervals. However, you need a considerable work and time to process a huge amount of the dataset with complicated signal separation procedures. When you update the model, the same amount of chores is demanded. Besides, the global model might be affected by the measurement errors of each observatory that are biased and the processing errors in satellite data so that the accuracy of the model would be degraded. In this study, as considered these problems, I introduced a localized method in modeling secular variation of the Earth's magnetic field over Northeast Asia region. Secular variation data from three Japanese observatories and one Chinese observatory that are all in the INTERMAGNET are implemented in the model valid between 1997 to 2011 with the interval of 6 months. With the resulting model, I compared with the global model called CHAOS-4, which includes the main, secular variation and secular acceleration models between 1997 to 2013 by using the three satellites' databases and INTERMAGNET observatory data. Also, the geomagnetic 'jerk' which is known as a sudden change in the time derivatives of the main field of the Earth, was discussed from the localized secular acceleration coefficients derived from spline models.

Development of a predictive model describing the growth of Staphylococcus aureus in processed meat product galbitang (식육추출가공품 중 갈비탕에서의 Staphylococcus aureus 성장예측모델 개발)

  • Son, Na-Ry;Kim, An-Na;Choi, Won-Seok;Yoon, Sang-Hyun;Suh, Soo-Hwan;Joo, In-Sun;Kim, Soon-Han;Kwak, Hyo-Sun;Cho, Joon-Il
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.3
    • /
    • pp.274-278
    • /
    • 2017
  • In this study, predictive mathematical models were developed to estimate the kinetics of Staphylococcus aureus growth in processed meat product galbitang. Processed meat product galbitang was inoculated with 0.1 mL of S. aureus culture and stored at 4, 10, 20, $37^{\circ}C$. The ${\mu}_{max}$ (maximum specific growth rate) and LPD (lag phase duration) values were calculated. The primary model was used to develop a response surface secondary model. The growth parameters were analyzed using the square root model as a function of storage temperature. The developed model was confirmed by calculating RMSE (Root Mean Square Error) values as statistic parameters. The LPD decreased, but ${\mu}_{max}$ increased with an increase in the storage temperature. At 4, 10, 20 and $37^{\circ}C$, $R^2$ was 0.99, 0.98, 0.99 and 0.99, respectively; RMSE was 0.39. The developed predictive growth model can be used to predict the risk of S. aureus contamination in processed meat product galbitang; hence, it has potential as an input model for the risk assessment.

The Evaluation of Meteorological Inputs retrieved from MODIS for Estimation of Gross Primary Productivity in the US Corn Belt Region (MODIS 위성 영상 기반의 일차생산성 알고리즘 입력 기상 자료의 신뢰도 평가: 미국 Corn Belt 지역을 중심으로)

  • Lee, Ji-Hye;Kang, Sin-Kyu;Jang, Keun-Chang;Ko, Jong-Han;Hong, Suk-Young
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.4
    • /
    • pp.481-494
    • /
    • 2011
  • Investigation of the $CO_2$ exchange between biosphere and atmosphere at regional, continental, and global scales can be directed to combining remote sensing with carbon cycle process to estimate vegetation productivity. NASA Earth Observing System (EOS) currently produces a regular global estimate of gross primary productivity (GPP) and annual net primary productivity (NPP) of the entire terrestrial earth surface at 1 km spatial resolution. While the MODIS GPP algorithm uses meteorological data provided by the NASA Data Assimilation Office (DAO), the sub-pixel heterogeneity or complex terrain are generally reflected due to coarse spatial resolutions of the DAO data (a resolution of $1{\circ}\;{\times}\;1.25{\circ}$). In this study, we estimated inputs retrieved from MODIS products of the AQUA and TERRA satellites with 5 km spatial resolution for the purpose of finer GPP and/or NPP determinations. The derivatives included temperature, VPD, and solar radiation. Seven AmeriFlux data located in the Corn Belt region were obtained to use for evaluation of the input data from MODIS. MODIS-derived air temperature values showed a good agreement with ground-based observations. The mean error (ME) and coefficient of correlation (R) ranged from $-0.9^{\circ}C$ to $+5.2^{\circ}C$ and from 0.83 to 0.98, respectively. VPD somewhat coarsely agreed with tower observations (ME = -183.8 Pa ~ +382.1 Pa; R = 0.51 ~ 0.92). While MODIS-derived shortwave radiation showed a good correlation with observations, it was slightly overestimated (ME = -0.4 MJ $day^{-1}$ ~ +7.9 MJ $day^{-1}$; R = 0.67 ~ 0.97). Our results indicate that the use of inputs derived MODIS atmosphere and land products can provide a useful tool for estimating crop GPP.

Estimation of Forest Productivity for Post-Wild-fire Restoration in East Coastal Areas (동해안 산불피해지 복구를 위한 산림생산력의 추정)

  • Koo, Kyo-Sang;Lee, Myung-Jong;Shin, Man-Yong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.1
    • /
    • pp.36-44
    • /
    • 2010
  • In order to rehabilitate forest sites damaged by wildfire via natural or artificial restoration, it is important to determine right tree species, which can acclimate to biogeoclimatic environment at the sites. The objectives of this study were to develop site index equation of different tree species for estimating forest productivity and to provide information on species selection for post-wildfire restoration. Site index equation was developed based on environmental information from wildfire damaged areas in Gangneung, Goseong, Donghae, and Samcheok, where were located in east coastal areas of South Korea. Despite the small numbers (4~5) of environmental variables used for the development of the site index equations, statistical analysis (e.g. mean difference, standard deviation of difference, and standard error of difference) showed relatively low bias and variation, suggesting that those equations can provide relatively high capability of estimation and practical applicability with high effectiveness. The small numbers of the variables enabled the model to be applied in a wide range of usages including determination of appropriate tree species for post-wildfire restoration. The estimation of forest site productivity showed the possibility of large distribution in east coastal region as the best site for Korean ash (Fraxinus rhynchophylla) and original oak (Quercus variabilis) that can be used for firebreak in the region. These results imply that damages by forest fire can be reduced significantly by replacing existing pure coniferous forests in the area with ones dominated by broad-leaved deciduous stands, which can play an important role as fire break and/or prevent a transition from surface fire to crown fire.