• Title/Summary/Keyword: surface energy effects

Search Result 1,241, Processing Time 0.029 seconds

Interface structure and anisotropic strain relaxation of nonpolar a-GaN on r-sapphire

  • Gong, Bo-Hyeon;Jo, Hyeong-Gyun;Song, Geun-Man;Yun, Dae-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.31-31
    • /
    • 2010
  • The growth of the high-quality GaN epilayers is of significant technological importance because of their commercializedoptoelectronic applications as high-brightness light-emitting diodes (LEDs) and laser diodes (LDs) in the visible and ultraviolet spectral range. The GaN-based heterostructural epilayers have the polar c-axis of the hexagonal structure perpendicular to the interfaces of the active layers. The Ga and N atoms in the c-GaN are alternatively stacked along the polar [0001] crystallographic direction, which leads to spontaneous polarization. In addition, in the InGaN/GaN MQWs, the stress applied along the same axis contributes topiezoelectric polarization, and thus the total polarization is determined as the sum of spontaneous and piezoelectric polarizations. The total polarization in the c-GaN heterolayers, which can generate internal fields and spatial separation of the electron and hole wave functions and consequently a decrease of efficiency and peak shift. One of the possible solutions to eliminate these undesirable effects is to grow GaN-based epilayers in nonpolar orientations. The polarization effects in the GaN are eliminated by growing the films along the nonpolar [$11\bar{2}0$] ($\alpha$-GaN) or [$1\bar{1}00$] (m-GaN) orientation. Although the use of the nonpolar epilayers in wurtzite structure clearly removes the polarization matters, however, it induces another problem related to the formation of a high density of planar defects. The large lattice mismatch between sapphiresubstrates and GaN layers leads to a high density of defects (dislocations and stacking faults). The dominant defects observed in the GaN epilayers with wurtzite structure are one-dimensional (1D) dislocations and two-dimensional (2D) stacking faults. In particular, the 1D threading dislocations in the c-GaN are generated from the film/substrate interface due to their large lattice and thermal coefficient mismatch. However, because the c-GaN epilayers were grown along the normal direction to the basal slip planes, the generation of basal stacking faults (BSFs) is localized on the c-plane and the generated BSFs did not propagate into the surface during the growth. Thus, the primary defects in the c-GaN epilayers are 1D threading dislocations. Occasionally, the particular planar defects such as prismatic stacking faults (PSFs) and inversion domain boundaries are observed. However, since the basal slip planes in the $\alpha$-GaN are parallel to the growth direction unlike c-GaN, the BSFs with lower formation energy can be easily formed along the growth direction, where the BSFs propagate straightly into the surface. Consequently, the lattice mismatch between film and substrate in $\alpha$-GaN epilayers is mainly relaxed through the formation of BSFs. These 2D planar defects are placed along only one direction in the cross-sectional view. Thus, the nonpolar $\alpha$-GaN films have different atomic arrangements along the two orthogonal directions ($[0001]_{GaN}$ and $[\bar{1}100]_{GaN}$ axes) on the $\alpha$-plane, which are expected to induce anisotropic biaxial strain. In this study, the anisotropic strain relaxation behaviors in the nonpolar $\alpha$-GaN epilayers grown on ($1\bar{1}02$) r-plane sapphire substrates by metalorganic chemical vapor deposition (MOCVO) were investigated, and the formation mechanism of the abnormal zigzag shape PSFs was discussed using high-resolution transmission electron microscope (HRTEM).

  • PDF

A Study on Characteristics of Lincomycin Degradation by Optimized TiO2/HAP/Ge Composite using Mixture Analysis (혼합물분석을 통해 최적화된 TiO2/HAP/Ge 촉매를 이용한 Lincomycin 제거특성 연구)

  • Kim, Dongwoo;Chang, Soonwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.1
    • /
    • pp.63-68
    • /
    • 2014
  • In this study, it was found that determined the photocatalytic degradation of antibiotics (lincomycin, LM) with various catalyst composite of titanium dioxide ($TiO_2$), hydroxyapatite (HAP) and germanium (Ge) under UV-A irradiation. At first, various type of complex catalysts were investigated to compare the enhanced photocatalytic potential. It was observed that in order to obtain the removal efficiencies were $TiO_2/HAP/Ge$ > $TiO_2/Ge$ > $TiO_2/HAP$. The composition of $TiO_2/HAP/Ge$ using a statistical approach based on mixture analysis design, one of response surface method was investigated. The independent variables of $TiO_2$ ($X_1$), HAP ($X_2$) and Ge ($X_3$) which consisted of 6 condition in each variables was set up to determine the effects on LM ($Y_1$) and TOC ($Y_2$) degradation. Regression analysis on analysis of variance (ANOVA) showed significant p-value (p < 0.05) and high coefficients for determination value ($R^2$ of $Y_1=99.28%$ and $R^2$ of $Y_2=98.91%$). Contour plot and response curve showed that the effects of $TiO_2/HAP/Ge$ composition for LM degradation under UV-A irradiation. And the estimated optimal composition for TOC removal ($Y_2$) were $X_1=0.6913$, $X_2=0.2313$ and $X_3=0.0756$ by coded value. By comparison with actual applications, the experimental results were found to be in good agreement with the model's predictions, with mean results for LM and TOC removal of 99.2% and 49.3%, respectively.

Effects of Electrodeposition Parameters on Electrochemical Hydroxyl Radical Evolution of PbO2 Electrode (이산화납 전극 제조 시 전기화학적 증착인자가 수산화라디칼 발생에 미치는 영향)

  • Shim, Soojin;Yoon, Jeyong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.12
    • /
    • pp.647-655
    • /
    • 2016
  • Lead dioxide ($PbO_2$) is an electrode material that is effective for organic pollutant degradation based on hydroxyl radical ($^{\bullet}OH$) attack. Representative parameters for $PbO_2$ electrodeposition are summarized to current, temperature, reaction time, concentration of Pb(II) and electrolyte agent. In this study, $Ti/PbO_2$ electrodes were fabricated by electrodeposition method under controlled reaction time, current density, temperature, concentration of $HNO_3$ electrolyte. Effects of deposition parameters on $^{\bullet}OH$ evolution were investigated in terms of electrochemical bleaching of p-Nitrosodimethylaniline (RNO). As major results, the $^{\bullet}OH$ evolution was promoted at the $PbO_2$ that was deposited in longer reaction time (1-90 min), lower current density ($0.5-50mA/cm^2$), higher temperature ($5-65^{\circ}C$) and lower $HNO_3$ concentration (0.01-1.0 M). Especially, the $PbO_2$ which was deposited in 0.01 M of lowest $HNO_3$ concentration by applying $20mA/cm^2$ for above 10 min was most effective on $^{\bullet}OH$ evolution. The performance gap between $PbO_2$s that was best and worst in $^{\bullet}OH$ evolution was about 41%. Among the properties of $PbO_2$ related on $^{\bullet}OH$ evolution performance, conductivity of $Ti/PbO_2$ significantly influenced on $^{\bullet}OH$ evolution. The increase in conductivity promoted $^{\bullet}OH$ evolution. In addition, the increase in crystal size of $PbO_2$ interfered $^{\bullet}OH$ evolution at surface of some $PbO_2$ deposits.

A COMPARATIVE STUDY ON THE PHYSICAL PROPERTIES OF ORTHODONTIC PLIERS ACCORDING TO TYPES OF STERILIZATION (멸균 방법에 따른 교정용 플라이어의 물성 변화에 대한 비교 연구)

  • Cho, Il-Je;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.28 no.2 s.67
    • /
    • pp.329-341
    • /
    • 1998
  • Sterilization has received much attention in orthodontic practices over the past several years. The present study was undertaken to investigate the effects of sterilization on the physical properties of orthodontic pliers-AEZ, Unitek, and Dentronix ligature cutters. This study was designed to examine the tips of ligature cutters before and after 200 and 400 sterilization cycles using the Bowmar RHT-1000, the Dentronix DDS-5000, and the Eschmann SES-2000. The tip surface and the fracture surface were observed with a scanning electron microscope. The microstructure was observed with an optical microscope. The hardness test was carried out with the mic개-Vickers hardness tester and the Rockwell C Scale hardness tester. The chemical composition was analyzed by energy dispersive X-ray spectrometer. The results of this study were as follows : 1. The number and the size of corrosion products on the tip surface and the proportion of cleavage planes in fractured specimen increased, but the hardness of the tip decreased in proportion to sterilization cycles. From these observations, it was considered that mechanical properities decreased in proportion to sterilization cycles. 2. The number and the size of chromium carbides increased in proportion to sterilization cycles. Coarse microstructure decreased mechanical properities. 3. The AEZ and Unitek ligature cutters were Fe-Cr stainless steels, but the Dentronix ligature cutter was Co-Cr alloy. There were many differences among manufactures, but the chemical composition was .not changed after sterilization cycles. 4. The tip edge of ligature cutter used in a clinic revealed microcracks with the SEM observation. Clinical experience confirmed that ligature cutters were gradually degraded by sterilization.

  • PDF

Effect of Torrefaction Condition on The Chemical Composition and Fuel Characteristics of Larch wood (낙엽송재의 화학적 조성 및 연료적 특성에 대한 반탄화 조건의 영향)

  • Kim, Sang Tae;Lee, Jae-Jung;Park, Dae-Hak;Yang, In;Han, Gyu-Seong;Ahn, Byoung Jun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.122-134
    • /
    • 2015
  • This study was conducted to investigate the potential of torrefied larch wood as a raw material of pellets. First of all, larch chip was torrefied at the temperatures of 230, 250 and $270^{\circ}C$ for 30, 50 and 70 min. Secondly, moisture content, moisture absorption, higher heating value and ash content of the torrefied chip were measured to examine the effects of torrefaction conditions on the fuel characteristics of larch. Thirdly, surfaces of the torrefied chip were observed by light microscope (LM), field emission scanning microscope (FE-SEM) and SEM-energy dispersive spectroscopy (EDXS). With the increases of torrefied temperature and time, contents of lignin increased and those of hemicellulose reduced. Moisture content of torrefied larch chip was greatly lower than that of non-torrefied chip. Moisture absorption of the torrefied chip decreased as torrefaction temperature increased. As torrefaction temperature increased, higher heating value and ash content of larch chip increased. However, durability of torrefied-larch pellets was remarkably lower comparing to non-torrefied-larch pellets. When surface of larch chip was observed by LM and FE-SEM, surface color and cell wall of the chip was getting darker and more collapsed with the increases of torrefaction conditions. Through the analysis of SEM-EDXS, distribution and quantity of lignin existing on the surface of larch chip increased with the increases of torrefied conditions. In conclusion, $270^{\circ}C$/50 min might be an optimal condition for the torrefaction of larch with the aspect of fuel characteristics, but torrefaction condition of $230^{\circ}C$/30 min should be considered according to the durability of torrefied-larch pellets.

Effects of Salts and Acid Solutions on the Weathering of Granite (화강암의 풍화에 미치는 염분과 산성용액의 영향)

  • Shon, Byung-Hyun;Jung, Jong-Hyeon;Kim, Hyun-Gyu;Yoo, Jeong-Gun;Lee, Hyung-Kun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.101-108
    • /
    • 2005
  • Because the stone cultural properties located outdoors, they have been altered and deteriorated in external appearance due to environmental factors such as acid rain, extreme change in temperature, and salts. Damage to stone cultural properties is accelerated particularly due to recent industrial development and environmental pollution. An experimental study was conducted to evaluate the effect of environmental contaminants on the weathering of granite. And as part of the developing of conservation method, $TiO_2$ catalyst was prepared and tested. When fresh granite was dipped into the salt and acid solutions, dissolution rate of eight minerals (Si, Mg, Ca, Na, K, Fe, Mn, Al) are abruptly increased at initial stage of reaction and then increased steadily until 100 cycles. After salt and acid solution experiments, the mineral compositions of the granite surface were lower then that of the fresh granite and density of the weathered granite was steadily decreased from $2.60\;g/cm^3$ to $2.56\;g/cm^3$, but Poissions ratio and absorption ratio were slightly increased. It was expected at stone cultural assets could be weathered by salts and acid rain. In the case of $TiO_2$ was coated to the granite, the dissolution rate of minerals and absorption ratio of $TiO_2$ coated granite were decreased. Therefore, the $TiO_2$ coating method tested in this study considered to be a viable method to assist in the conservation of stone cultural properties from environmental contaminants.

Effect of Composition of γ-Al2O3/SiO2 Mixed Support on Fischer-Tropsch Synthesis with Iron Catalyst (철 기반 촉매의 Fischer-Tropsch 합성에서 γ-Al2O3/SiO2 혼합 지지체 조성의 영향)

  • Min, Seon Ki;No, Seong-Rae;You, Seong-sik
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.436-442
    • /
    • 2017
  • Fischer-Tropsch synthesis is the technology of converting a syngas (CO+$H_2$) derived from such as coal, natural gas and biomass into a hydrocarbon using a catalyst. The catalyst used in the Fischer-Tropsch synthesis consists of active metal, promoter and support. The types of these components and composition affect the reaction activity and product selectivity. In this study, we manufactured an iron catalyst using ${\gamma}-Al_2O_3/SiO_2$ mixed support (100/0 wt%, 75/25 wt%, 50/50 wt%, 25/75 wt%, 0/100 wt%) by an impregnation method to investigate how the composition of ${\gamma}-Al_2O_3/SiO_2$ mixed support effects on the reaction activity and product selectivity. The physical properties of catalyst were analyzed by $N_2$ physical adsorption and X-Ray diffraction method. The Fischer-Tropsch synthesis was conducted at $300^{\circ}C$, 20bar in a fixed bed reactor for 60h. According to the results of the $N_2$ physical adsorption analysis, the BET surface area decreases as the composition of ${\gamma}-Al_2O_3$ decreases, and the pore volume and pore average diameter increase as the composition of ${\gamma}-Al_2O_3$ decreases except for the composition of ${\gamma}-Al_2O_3/SiO_2$ of 50/50 wt%. By the results of the X-Ray diffraction analysis, the particle size of ${\alpha}-Fe_2O_3$ decreases as the composition of ${\gamma}-Al_2O_3$ decreases. As a result of the Fischer-Tropsch synthesis, the CO conversion decreases as the composition of ${\gamma}-Al_2O_3$ decreases, and the selectivity of C1-C4 decreases until the composition of ${\gamma}-Al_2O_3$ was 25 wt%. In contrast, the selectivity of C5+ increases until the composition of ${\gamma}-Al_2O_3$ is 25 wt%.

The Effect of Geometric Factors When Measuring Standard Count for Radioactive Iodine Thyroid Uptake Rate (표준계수 측정 시 기하학적 요인이 방사성 요오드 갑상선 섭취율에 미치는 영향)

  • Oh, Joo Young;Kim, Jung Yul;Oh, Ki Baek;Oh, Shin Hyun;Kim, Jae Sam;Lee, Chang Ho;Park, Hoon-Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.1
    • /
    • pp.53-61
    • /
    • 2013
  • Objectives: It is certain that Radioactive iodine thyroid uptake(RAIU) rate should be measured with the standard counts considering the thyroid gland depth in enlarged thyroid patients for the variation from geometric factors. The purpose of this paper is to consider the effects of geometric factors according to detector to source distance and the effective thyroid depth on RAIU rate with experiment test. Materials and Methods: I-131 370 kBq ($10{\mu}Ci$) point source was measured by Captus-3000 thyroid uptake system (Capintec, NJ, USA) with a change Detector-Source Distance from 20 cm to 30 cm at an interval of 1 cm. And we changed the Neck phantom surface-Source Depth in the phantom with 1 cm, 2 cm, 5 cm using the neck phantom in order to reproduce the effective thyroid depth. Results: Every experimental group follows power curve as inverse square curve ($$R2{\geq_-}0.915$$). The average count rates in the case not using a phantom and the every case applied the effective thyroid depth using a phantom was not identical each other. There was significant fluctuations upon the effective thyroid depths applied the effective thyroid depth above 1 cm in $364.4 keV{\pm}10%$ energy ROI (p<0.01). There was not significant difference between the count rates of 1 cm and 2 cm in $364.4keV{\pm}20%$ and $637.1keV{\pm}6.2%$ (p=0.354, p=0.397). In assumed RAIU rate from regression equation, $364.4keV{\pm}20%$ was lower difference than $364.4keV{\pm}10%$ as 6.42% and 5.09% per 1 cm. Every change of count rate upon depth appears decreased line on Linear Regression, but the case of $284.3keV{\pm}10%$ increased only. And also, The graphs of coefficient of variation upon depth increased as straight line on every experimental group. Conclusion: The result appears that application of $364.4keV{\pm}20%$ energy ROI is more suitable for reducing error from the effective thyroid depth. And also, we can estimate the error of 20 cm should be highly reduced than 30 cm for Inverse Square Law. Therefore, If there is not information of the thyroid depth, it is considered that the error from thyroid depth can reduce through set up energy ROIs for $364.4keV{\pm}20%$, and increase Detector-Source Distances.

  • PDF

Influence of New Town Development on the Urban Heat Islands - ln the Case of Pan-Gyo Area and Bun-Dang New Town - (신도시 개발이 도시열섬 형성에 미치는 영향 - 분당신도시와 판교지역을 중심으로 -)

  • 송영배
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.4
    • /
    • pp.37-46
    • /
    • 2002
  • The main purpose of this research is to discuss the urban heat island which will be caused by urbanization, especially by the construction of new town on a wide green zone. Over the last ten years, five new towns have been developed around the Seoul metropolitan area. However these new towns become bedroom communities and create traffic problems between Seoul and its surrounding areas because of an increase in population and a lack of roads and other infrastructures. The construction of another such new town is under consideration in the Pan-gyo area. But it is important that Pan-gyo remains a wide green zone. Many studies show that green space can play an important role in improving urban eco-meteorological, ameliorative capability and air hygiene. The objective of this study is to analyze the urban heat islands of Bund-Dang Si which was constructed in 1996 and of the Pan-Gyo area planned as new town. To investigate the local thermal environment and its negative effects caused by change of the land use type and urbanization we used LANDSAT TM images for extraction of urban surface temperature according to change of land use over 15 years. These data were analyzed together with digital land use and topographic data. As a study result, we found that the thermal island of this area from 1985 to 1999 rapidly increased with a difference of mean temperature of more than 12'E. Before construction of Bun-Dang Si the temperature of this area was the same as the forest, but during the new town construction in 1991, an urban heat island developed. The temperature of forest with a size of over 50% of the investigation area was lowest, which leads us to conclude that the forest cools the urban and its surroundings. The mean temperature of the residential and commercial area is more than +4.5$^{\circ}C$ higher then forest, so this method of land use is the main factor increasing the urban heat island. Urban heat islands and green space play an important role in urban wind systems, i.e. Thermal Induced Air Exchange and Structural Wind Circulation, because of their special properties with regard to energy balance between constructed urban and land. The skill to allocate land use types in urban areas is a very important planning device to reduce air pollution and induce the fresh cold air from green space. An urban climatic experiment featuring a numerical wind simulation study to show the air corridor will be published in a following research paper.

Effect of glass-infiltration treatments on the shear bond strength between zirconia and ultra low-fusing porcelain veneer (글라스 용융침투 처리가 지르코니아와 초저온 소성 도재와의 전단결합강도에 미치는 영향)

  • Yim, Eun-Kyung;Park, Sang-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.4
    • /
    • pp.269-277
    • /
    • 2018
  • Purpose: This study examined the effects of glass infiltration treatments on the shear bond strength (SBS) between zirconia core and ultra low-fusing porcelain veneer. Materials and methods: The zirconia specimens were classified into 4 groups (n = 12): Untreated zirconia (group Z), zirconia coated ZirLiner (group ZL), glass-infiltrated zirconia (group ZG), glass-infiltrated and sandblasted zirconia (group ZGS). A cylinder of ultra low-fusing veneer porcelain was build up on each disk ($6mm{\times}3mm$). SBS was measured using a universal testing machine. Scanning electron microscope and Energy Dispersive X-ray spectroscopy were used to evaluate the surface of zirconia and failure pattern after SBS. Results: SBS value of group ZGS was significantly lower than that of other groups (P < .05). No significant differences were detected among group ZL, group Z and group ZG. Conclusion: Glass infiltration is not effective to the bond strength between zirconia and ultra low-fusing porcelain veneer. Sandblasting also dramatically decreased the bonding strength.