• Title/Summary/Keyword: surface energy

Search Result 9,107, Processing Time 0.039 seconds

SURFACE HARDNESS OF THE DENTAL COMPOSITE CURED BY LIGHT THAT PENETRATE TOOTH STRUCTURE ACCORDING TO THICKNESS OF TOOTH STRUCTURE, LIGHT INTENSITY AND CURING TIME (치질을 투과한 조사광에 의한 복합레진 중합시 치질의 두께, 광세기 및 조사 시간이 복합레진의 표면 경도에 미치는 영향)

  • Cho, Soo-Kyung;Kim, Dong-Jun;Hwang, Yun-Chan;Oh, Won-Mann;Hwang, In-Nam
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.2
    • /
    • pp.128-137
    • /
    • 2005
  • In this study we measured the amount of light energy that was projected through the tooth material and analyzed the degree of polymerization by measuring the surface hardness of composites. For polymerization, Optilux 501 (Demetron, USA) with two types of light guide was used: a 12 mm diameter light guide with 840 nW/$cm^2$ light intensity and a 7 mm diameter turbo light guide with 1100 nW/$cm^2$. Specimens were divided into three groups according to thickness of penetrating tooth (1 mm, 2 mm, 0 mm). Each group was further divided into four subgroups according to type of light guide and curing time (20 seconds, 40 seconds). Vickers' hardness was measured by using a microhardness tester. In 0 mm and 1 mm penetrating tooth group, which were polymerized by a turbo light guide for 40 seconds, showed the highest hardness values. The specimens from 2 mm penetrating tooth group, which were polymerized for 20 seconds, demonstrated the lowest hardness regardless of the types of light guides (p < 0.05). The results of this study suggest that, when projecting tooth material over a specified thickness, the increase of polymerization will be limited even if light intensity or curing time is increased.

CNT-Ni-Fabric Flexible Substrate with High Mechanical and Electrical Properties for Next-generation Wearable Devices (차세대 웨어러블 디바이스를 위한 높은 기계적/전기적 특성을 갖는 CNT-Ni-Fabric 유연기판)

  • Kim, Hyung Gu;Rho, Ho Kyun;Cha, Anna;Lee, Min Jung;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.2
    • /
    • pp.39-44
    • /
    • 2020
  • Recently, numerous researches are being conducted in flexible substrate to apply to wearable devices. Particularly, Conductive substrate researches that can implement the wearable devices on clothing are massive. In this study, we formed fiber substrate spraying CNT and Pd mixed solution on it and plated metal layer with electroless plating. Used SEM equipment and EDS analysis to analysis structure of the plated fiber substrate and discovered Ni layer was created. For check electrical properties, mapping was performed to check surface resistance and distribution of resistance of electroless plated fiber substrate with 4-point probe. It was confirmed that conductivity was improved as the duration of electroless plating was increased, and it was found that distribution of resistance by surface location was uniform. Changes in resistance due to mechanical stress were measured through tensile, bending, and twisting tests. As a result, it was confirmed that resistance change of flexible substrate gradually disappeared as plating time increased. Using UTM (Universal testing machine), it was analyzed mechanical properties of the electroless plated substrate with respect to changes in plating time were improved. In the case of conductive fiber substrate in which electroless plating was performed for 2 hours, tensile strength was increased by 16 MPa than fiber substrate. Based on these results, we found that Ni-CNT-Fabric flexible substrate is adequate for clothing-intergrated conductive substrate and we positively expect that this experiment shows flexible substrate can adapt to and develop not only a wearable device technology but also other fields needing flexibility such as battery, catalyst and solar cell.

Characterization on the Behavior of Heavy Metals and Arsenic in the Weathered Tailings of Songcheon Mine (송천광산의 풍화광미 내 중금속 및 비소 거동 특성)

  • Lee, Woo-Chun;Kim, Young-Ho;Cho, Hyen-Goo;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.125-139
    • /
    • 2010
  • Behavior of heavy metals and arsenic in the tailings of Songcheon Au-Ag mine was characterized via both mineralogical and geochemical methods. Mineral composition of the tailings was investigated by X-ray diffractometry, energy-dispersive spectroscopy, and electron probe micro-analyzer (EPMA) and total concentrations of heavy metals and arsenic and their chemical forms were analyzed by total digestion of aqua regia and sequential extraction method, respectively. The results of mineralogical study indicate that the tailings included mineral particles of resinous shape mainly consisting of galena, sphalerite, pyrite, quartz, and scorodite, and specifically socordite was identified in the form of matrix. EPMA quantitative analyses were performed to evaluate the weatherability of each mineral, and the results suggest that it decreased in the sequence of arsenopyrite > galena > sphalerite > pyrite. The weathering pattern of galena was observed to show distinctive zonal structure consisting of secondary minerals such as anglesite and beudantite. In addition, almost all of arsenopyrite has been altered to scorodite existing asmatrix and galena, sphalerite, and pyrite which have lower weatherability than arsenopyrite were identified within the matrix of scorodite. During the process of alteration of arsenopyrite into scorodite, it is likely that a portion of arsenic was lixiviated and caused a great deal of detrimental effects to surrounding environment. The results of EPMA quantitative analyses verify that the stability of scorodite was relatively high and this stable scorodite has restrained the weathering of other primary minerals within tailings as a result of its coating of mineral surfaces. For this reason, Songcheon tailings show the characteristics of the first weathering stage, although they have been exposed to the surface environment for a long time. Based on the overall results of mineralogical and geochemical studies undertaken in this research, if the tailings are kept to be exposed to the surface environment and the weathering process is continuous, not only hazardous heavy metals, such as lead and arsenic seem to be significantly leached out because their larger portions are being partitioned in weakly-bound (highly-mobile) fractions, but the potential of arsenic leaching is likely to be high as the stability of scorodite is gradually decreased. Consequently, it is speculated that the environmental hazard of Songcheon mine is significantly high.

Elemental analysis of the fluoride varnish effects on root caries initiation (불소 바니쉬 도포 후 초기 치근 우식 발현에 대한 정량원소분석)

  • Park, Se-Eun;Yi, Kee-Wook;Kim, Hae-Young;Son, Ho-Hyun;Chang, Ju-Hea
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.4
    • /
    • pp.290-299
    • /
    • 2011
  • Objectives: The usage of fluoride varnish for a moderate to low caries-risk group has not been well validated. This study aimed to evaluate the preventive and therapeutic efficacies of fluoride varnish on the initiated root caries. Materials and Methods: Ten premolars were sectioned into quarters, further divided into two windows, one of which was painted with Fluor Protector (1,000 ppm fluoride, Ivoclar Vivadent). An initial lesion with a well-preserved surface layer was produced by pH cycling. Scanned line analysis using energy dispersive spectrometry determined the weight percentages of Ca and P in the demineralized layer. Scanning Electron microscopy and confocal laser scanning microscopy (CLSM) evaluated the varnish-applied root surfaces. Results: The mean lesion depth (SD) was 12.3 (2.6) ${\mu}m$ (single cycling) and 19.6 (3.8) ${\mu}m$ (double cycling). Double cycling extended the lesion depth, but induced no more mineral loss than single cycling (p < 0.05). The mean weight percentages of Ca and P between groups with and without varnish were not significantly different (p < 0.05). A CLSM showed varnish remained within 15 ${\mu}m$ of the surface layer. Conclusions: When a mild acid challenge initiated root tissue demineralization, the application of low-concentration fluoride varnish did not influence the lesion depth or the mineral composition of the subsurface lesion.

Adhesion Characteristics and the High Pressure Resistance of Biofilm Bacteria in Seawater Reverse Osmosis Desalination Process (역삼투 해수담수화 공정 내 바이오필름 형성 미생물의 부착 및 고압내성 특성)

  • Jung, Ji-Yeon;Lee, Jin-Wook;Kim, Sung-Youn;Kim, In-S.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.51-57
    • /
    • 2009
  • Biofouling in seawater reverse osmosis (SWRO) desalination process causes many problems such as flux decline, biodegradation of membrane, increased cleaning time, and increased energy consumption and operational cost. Therefore biofouling is considered as the most critical problem in system operation. To control biofouling in early stage, detection of the most problematic bacteria causing biofouling is required. In this study, six model bacteria were chosen; Bacillus sp., Flavobacterium sp., Mycobacterium sp., Pseudomonas aeruginosa, Pseudomonas fluorescens, and Rhodobacter sp. based on report in the literature and phylogenetic analysis of seawater intake and fouled RO membrane. The adhesion to RO membrane, the high pressure resistance, and the hydrophobicity of the six model bacteria were examined to find out their fouling potential. Rhodobacter sp. and Mycobacterium sp. were found to attach very well to RO membrane surface compared to others used in this study. The test of hydrophobicity revealed that the bacteria which have high hydrophobicity or similar contact angle with RO membrane ($63^{\circ}$ of contact angle) easily attached to RO membrane surface. P. aeruginosa which is highly hydrophilic ($23.07^{\circ}$ of contact angle) showed the least adhesion characteristic among six model bacteria. After applying a pressure of 800 psi to the sample, Rhodobacter sp. was found to show the highest reduction rate; with 59-73% of the cells removed from the membrane under pressure. P. fluorescens on the other hand analyzed as the most pressure resistant bacteria among six model bacteria. The difference between reduction rates using direct counting and plate counting indicates that the viability of each model bacteria was affected significantly from the high pressure. Most cells subjected to high pressure were unable to form colonies even thought they maintained their structural integrity.

Geochemistry of Geothermal Waters in Korea: Environmental Isotope and Hydrochemical Characteristics II. Jungwon and Munkyeong Areas (한반도 지열수의 지화학적 연구: 환경동위원소 및 수문화학적 특성 II. 중원 및 문경 지역)

  • Yun, Seong-Taek;Koh, Yong-Kwon;Choi, Hyen-Su;Youm, Seung-Jun;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.31 no.3
    • /
    • pp.201-213
    • /
    • 1998
  • From the Jungwon and Munkyeong areas which are among the famous producers of the carbonate-type groundwaters in Korea, various kinds of natural waters (deep groundwater, shallow groundwater and surface water) were collected between 1996 and 1997 and were studied for hydrogeochemical and environmental isotope (${\delta}^{34}S_{so4}$, ${\delta}^{18}O$, ${\delta}D$)systematics. Two types of deep groundwaters (carbonate type and alkali type) occur together in the two areas, and each shows distinct hydrogeochemical and environmental isotope characteristics. The carbonate type waters show the hydrochemical feature of the 'calcium(-sodium)-bicarbonate(-sulfate) type', whereas the alkali type water of the 'sodium-bicarbonate type'. The former type waters are characterized by lower pH, higher Eh, and higher amounts of dissolved ions (especialJy, $Ca^{2+}$, $Na^{+}$, $Mg^{2+}$, $HCO_3{^-}$ and $SO_4{^{2-}}$). Two types of deep groundwaters are all saturated or supersaturated with respect to calcite. Two types of deep groundwaters were both derived from pre-thermonuclear (about more than 40 years old) meteoric waters (with lighter 0 and H isotope data than younger waters, i.e., shallow cold groundwaters and surface waters) which evolved through prolonged water-rock interaction. Based on the geologic setting, water chemistry, and environmental isotope data, however, each of these two different types of deep groundwaters represents distinct hydrologic and hydrogeochemical evolution at depths. The carbonate type groundwaters were formed through mixing with acidic waters that were derived from dissolution of pyrites in hydrothermal vein ores (for the Jungwon area water) or in anthracite coal beds (for the Munkyeong area water). If the deeply percolating meteoric waters did not meet pyrites during the circulation, only the alkali type groundwaters would form. This hydrologic and hydrogeochemical model may be successfully applied to the other carbonate type groundwaters in Korea.

  • PDF

Characteristics and Formation conditions of the Rhodoliths in Wu Island beach, Jeju-do, Korea: Preliminary Report (제주도 우도의 홍조단괴 해빈 퇴적물의 특징과 형성조건 : 예비연구 결과)

  • 김진경;우경식;강순석
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.4
    • /
    • pp.401-410
    • /
    • 2003
  • Three beaches of the Seogwang-ri coast in the western part of Wu Island, Jeju-do, are solely composed of rhodoliths (red algal nodules). The beach sediments are coarse sand to granule in size and they show the banded distribution according to size. Commonly the larger pebble-sized rhodoliths are concentrated near the rocky coast, resulting from the transportation of the nodules from shallow marine environments by intermittent typhoons. Based on the internal texture of the rhodoliths, it appears that crustose red algae, Lithophyllum sp., is the main contributor for the formation of the rhodolith. The coarse sand to granule-sized grains show that they started to grow from the nucleus as rhodoliths, but the surface was severely eroded by waves. However, the pebble to cobble-sized grains exhibit the complete growth pattern of rhodoliths and sometimes contain other calcareous skeletons. It is common that encrusting red algae are intergrown with encrusting bryozoan. The surface morphology of rhodolith tends to change from the concentric to domal shape towards the outer part. This suggests that the rhodolith grew to a certain stage by rolling, but it grew in more quiet condition without rolling as it became larger. Aragonite and calcite cements can be found in the pores within rhodoliths (conceptacle, intraskeletal pore in bryozoan, and boring), and this means that shallow marine cementation has occurred during their growth. Growth of numerous rhodoliths in shallow marine environment near the Seogwang-ri coast indicates that this area has suitable oceanographic conditions for their growth such as warm water temperature (about 19$^{\circ}C$ in average) and clear water condition due to the lack of terrestrial input of volcanoclastic sediments. Fast tidal current and high wave energy in the shallow water setting can provide suitable conditions enough for their rolling and growth. Typhoons passing this area every summer also influence on the growth of rhodoliths.

Removal Properties of Methylene Blue using Biochar Prepared from Street Tree Pruning Branches and Household Wood Waste (가로수 전정가지 및 생활계 폐목재를 이용하여 제조한 바이오차의 Methylene Blue 흡착특성)

  • Do, Ji-Young;Kim, Dong-Su;Park, Kyung-Chul;Park, Sam-Bae;Chang, Yoon-Young;Yang, Jae-Kyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.3
    • /
    • pp.13-22
    • /
    • 2022
  • In order to improve water quality of the water system contaminated with dyes, biochars prepared using discarded waste resources were applied in this study. Biochars with a large specific surface area were manufactured using street tree pruning products or waste wood, and were applied to remove an organic dye in synthetic water. Biochars were made by pyrolysis of typical street tree porch products (Platanas, Ginkgo, Aak) and waste wood under air-controlled conditions. Methylene blue (MB), which is widely used in phosphofibers, paper, leather, and cotton media, was selected in this study. The adsorption capacity of Platanas for MB was the highest and the qmax value obtained using the Langmuir model equation was 78.47 mg/g. In addition, the adsorption energy (E) (kJ/mol) of MB using the Dubinin-Radushkevich (D-R) model equation was 4.891 kJ/mol which was less than 8 kJ/mol (a criteria distinguishing physical adsorption from chemical adsorption). This result suggests a physical adsorption with weak interactions such as van der Waals force between the biochar and MB. In addition, the physical adsorption may resulted from that Platanas-based biohar has the largest specific surface area and pore volume. The ∆G value obtained through the adsorption experiment according to temperature variation was -3.67 to -7.68, which also suggests a physical adsorption. Considering these adsorption results, the adsorption of MB onto Platanas-based biochar seems to occur through physical adsorption. Overall, it was possible to suggest that adsorption capacity of the biochr prepared from this study was equal to or greater than that of commercial activated carbon reported in other studies.

Characteristics of Astronomical Tide and Sea Level Fluctuations in Kiribati and Neighboring Countries (키리바시와 주변국 천문조위 특성 및 해수면 변동)

  • Kim, Yangoh;Kim, Jongkyu;Kim, Hyeon-Ju
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.746-752
    • /
    • 2022
  • Kiribati, a South Pacific island, and its surrounding countries are gradually submerging to rising sea levels. The sea level continues to change according to the degree of thermal expansion of glaciers and seawater that decreases with increase in temperature. Global warming affects both the amount and volume of seawater, thus increasing sea level. Tidal phenomena occur twice a day to the attraction of celestial bodies such as the moon and the sun. The moon changes the angle of orbiting surface with the Earth equator every 18.6 years, and the magnitude of the tidal force changes depending on the distance between the Earth equator and the moon orbital surface. The University of Hawaii Sea Level Center selected Tarawa, Christmas, Kanton of Kiribati,, Lautoka, Suva of Fiji,Funafuti of Tuvalu, Nuk1u'alofa of Tonga, and Port Vila of Vanuatu. When comparing tide levels for each year for 19 years, the focus was on checking the change in sleep to Tide levels, and rising sea levels was the effect of Tide levels. The highest astronomical tides (HAT) and lowest astronomical tides (LAT) were identified as Tarawa 297.0, 50.8 cm, Christmas 123.8, 19.9 cm, Kanton 173.7, 39.9 cm, Lautoka 240.7, 11.3 cm, Funafuti 328.6, 98.4 cm, Nuk1u'alofa 188.8, 15.5 cm, Port Vila 161.5, -0.5cm, respectively. The Sea level rising speed was Tarawa 3.1 mm/year, Christmas -1.0 mm/year, Kanton 1.6 mm/year, Lautoka 3.1 mm/year, Suva 7.4 mm/year, Funafuti 1.4 mm/year, Nuk1u'alofa 4.2 mm/year, and Port Vila -1.2 mm/year, respectively

Preparation and Gas Permeation Performance of Pd-Ag-Cu Hydrogen Separation Membrane Using α-Al2O3 Support (α-Al2O3 지지체를 이용한 Pd-Ag-Cu 수소 분리막의 제조 및 기체투과 성능)

  • Sung Woo Han;Min Chang Shin;Xuelong Zhuang;Jae Yeon Hwang;Min Young Ko;Si Eun Kim;Chang Hoon Jung;Jung Hoon Park
    • Membrane Journal
    • /
    • v.34 no.1
    • /
    • pp.50-57
    • /
    • 2024
  • In this experiment, Pd-Ag-Cu membrane was manufactured using electroless plating on an α-Al2O3 support. Pd, Ag and Cu were each coated on the surface of the support through electroless plating and heat treatment was performed for 18 h at 500℃ in H2 in the middle of electroless plating to form Pd alloy. The surface of the Pd-Ag-Cu membrane was observed through Scanning Electron Microscopy (SEM), and the thickness of the Pd membrane was measured to be 7.82 ㎛ and the thickness of the Pd-Ag-Cu membrane was measured to be 3.54 ㎛. Energy dispersive X-ray spectroscopy and X-ray diffraction analysis confirmed the formation of a Pd-Ag-Cu alloy with a composition of Pd-78wt%, Ag-8.81wt% and Cu-13.19wt%. The gas permeation experiment was conducted under the conditions of 350~450℃ and 1~4 bar in H2 single gas and H2/N2 mixed gas. The maximum H2 flux of the hydrogen separation membrane measured in H2 single gas is 74.16 ml/cm2·min at 450℃ and 4 bar for the Pd membrane and 113.64 ml/cm2·min at 450℃ and 4 bar for the Pd-Ag-Cu membrane. In the case of the separation factor measured in H2/N2 mixed gas, separation factors of 2437 and 11032 were measured at 450℃ and 4 bar.