• Title/Summary/Keyword: surface emissivity

Search Result 143, Processing Time 0.028 seconds

Thermal Emissivity of Nuclear Graphite as a Function of its Oxidation Degree (3): Structural Study using Scanning Electron Microscope and X-Ray Diffraction

  • Seo, Seung-Kuk;Roh, Jae-Seung;Kim, Suk-Hwan;Chi, Se-Hwan;Kim, Eung-Seon
    • Carbon letters
    • /
    • v.12 no.1
    • /
    • pp.8-15
    • /
    • 2011
  • We study the relationships between the thermal emissivity of nuclear graphites (IG-110, PCEA, IG-430 and NBG-18) and their surface structural change by oxidation using scanning electron microscope and X-ray diffraction (XRD). The nonoxidized (0% weight loss) specimen had the surface covered with glassy materials and the 5% and 10% oxidized specimens, however, showed high roughness of the surface without glassy materials. During oxidation the binder materials were oxidized first and then graphitic filler particles were subsequently oxidized. The 002 interlayer spacings of the non-oxidized and the oxidized specimens were about $3.38{\sim}3.39{\AA}$. There was a slight change in crystallite size after oxidation compared to the nonoxidized specimens. It was difficult to find a relationship between the thermal emissivity and the structural parameters obtained from the XRD analysis.

Study on Thin Sea Ice Thickness using Passive Microwave Brightness Temperature

  • Naoki, Kazuhiro;Ukita, Jinro;Nishio, Fumihiko
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.1015-1018
    • /
    • 2006
  • The use of passive microwave data for estimating sea-ice thickness is limited by strong dependence of emissivity on near-surface brine. However, this particular characteristic becomes a basis for an algorithm to estimate thickness of thin sea-ice if a thickness-salinity-emissivity relationship is established. This study aims at developing an algorithm to estimate sea ice thickness on the basis of this relationship. In order to establish a thickness-salinity-emissivity relationship, we have conducted multi-platform synchronous observations in the Sea of Okhotsk. We note a positive relationship between thickness and brightness temperature. From observations, we also establish an empirical relationship between salinity and emissivity, thus between thickness and brightness temperature. The derived relationship is qualitatively similar to the one based on Hoekstra and Cappillino's formulation. Our results suggest that for thin sea-ice in the winter period there is potential to develop an algorithm to estimate sea-ice thickness.

  • PDF

Calculation of Surface Broadband Emissivity by Multiple Linear Regression Model (다중선형회귀모형에 의한 지표면 광대역 방출율 산출)

  • Jo, Eun-Su;Lee, Kyu-Tae;Jung, Hyun-Seok;Kim, Bu-Yo;Zo, Il-Sung
    • Journal of the Korean earth science society
    • /
    • v.38 no.4
    • /
    • pp.269-282
    • /
    • 2017
  • In this study, the surface broadband emissivity ($3.0-14.0{\mu}m$) was calculated using the multiple linear regression model with narrow bands (channels 29, 30, and 31) emissivity data of the Moderate Resolution Imaging Spectroradiometer (MODIS) on Earth Observing System Terra satellite. The 307 types of spectral emissivity data (123 soil types, 32 vegetation types, 19 types of water bodies, 43 manmade materials, and 90 rock) with MODIS University of California Santa Barbara emissivity library and Advanced Spaceborne Thermal Emission & Reflection Radiometer spectral library were used as the spectral emissivity data for the derivation and verification of the multiple linear regression model. The derived determination coefficient ($R^2$) of multiple linear regression model had a high value of 0.95 (p<0.001) and the root mean square error between these model calculated and theoretical broadband emissivities was 0.0070. The surface broadband emissivity from our multiple linear regression model was comparable with that by Wang et al. (2005). The root mean square error between surface broadband emissivities calculated by models in this study and by Wang et al. (2005) during January was 0.0054 in Asia, Africa, and Oceania regions. The minimum and maximum differences of surface broadband emissivities between two model results were 0.0027 and 0.0067 respectively. The similar statistical results were also derived for August. The surface broadband emissivities by our multiple linear regression model could thus be acceptable. However, the various regression models according to different land covers need be applied for the more accurate calculation of the surface broadband emissivities.

Improvement of infrared channel emissivity data in COMS observation area from recent MODIS data(2009-2012) (최근 MODIS 자료(2009-2012)를 이용한 천리안 관측 지역의 적외채널 방출률 자료 개선)

  • Park, Ki-Hong;Suh, Myoung-Seok
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.109-126
    • /
    • 2014
  • We improved the Land Surface Emissivity (LSE) data (Kongju National University LSE v.2: KNULSE_v2) over the Communication, Ocean and Meteorological Satellite (COMS) observation region using recent(2009-2012) Moderate Resolution Imaging Spectroradiometer (MODIS) data. The surface emissivity was derived using the Vegetation Cover Method (VCM) based on the assumption that the pixel is only composed of ground and vegetation. The main issues addressed in this study are as follows: 1) the impacts of snow cover are included using Normalized Difference Snow Index (NDSI) data, 2) the number of channels is extended from two (11, 12 ${\mu}m$) to four channels (3.7, 8.7, 11, 12 ${\mu}m$), 3) the land cover map data is also updated using the optimized remapping of the five state-of-the-art land cover maps, and 4) the latest look-up table for the emissivity of land surface according to the land cover is used. The updated emissivity data showed a strong seasonal variation with high and low values for the summer and winter, respectively. However, the surface emissivity over the desert or evergreen tree areas showed a relatively weak seasonal variation irrespective of the channels. The snow cover generally increases the emissivity of 3.7, 8.7, and 11 ${\mu}m$ but decreases that of 12 ${\mu}m$. As the results show, the pattern correlation between the updated emissivity data and the MODIS LSE data is clearly increased for the winter season, in particular, the 11 ${\mu}m$. However, the differences between the two emissivity data are slightly increased with a maximum increase in the 3.7 ${\mu}m$. The emissivity data updated in this study can be used for the improvement of accuracy of land surface temperature derived from the infrared channel data of COMS.

Inter-comparison of three land surface emissivity data sets (MODIS, CIMSS, KNU) in the Asian-Oceanian regions (아시아-오세아니아 지역에서의 세 지표면 방출률 자료 (MODIS, CIMSS, KNU) 상호비교)

  • Park, Ki-Hong;Suh, Myoung-Seok
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.2
    • /
    • pp.219-233
    • /
    • 2013
  • In this study, spatio-temporal variations of Land Surface Emissivity (LSE) of the three LSE data sets in the Asian-Oceanian regions were addressed. The MODerate Resolution Imaging Spectroradiometer (MODIS) LSE, Cooperative Institute for Meteorological Satellite Studies (CIMSS) LSE, and Kongju National Univ. (KNU) LSE data sets were used. The three data sets showed very similar emissivity in the Tibetan Plateau, desert in the Middle East and Australia, and low latitude regions irrespective of season. The emissivity of $12{\mu}m$ was systematically greater than that of $11{\mu}m$, in particular, in the Tibetan Plateau, desert over Middle East and Australia. In general, they showed a weak seasonal variation in the low latitude regions although the emissivity was different among them. However, the three data sets showed quite different spatial and temporal variations in the other regions of Asian-Oceanian regions. The KNU LSE showed a systematic seasonal variation with a high emissivity during summer and low emissivity during winter but the other two LSE data sets showed irregular seasonal variations without regard to the regions. And the annual mean correlations of $11{\mu}m$ and $12{\mu}m$ between KNU LSE and MODIS LSE (KNU LSE and CIMSS LSE; MODIS LSE and CIMSS LSE) were 0.423 and 0.399 (0.330, 0.101; 0.541, 0.154), respectively. The relatively low correlations and strong inter-month variations, in particular, in $12{\mu}m$, indicated that consistency in spatial variation was very low. The comparison results showed that caution should be given before operational use of the LSE data sets in these regions.

Change of Surface Temperature and Far-infrared Emissivity in Ceramics Manufactured from a Board Mixed with Sawdust and Mandarin Peel (톱밥·귤박 혼합보드로 제조한 세라믹의 표면온도 변화 및 원적외선방사 특성)

  • Hwang, Jung-Woo;Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.66-79
    • /
    • 2019
  • The aim of the study is to use the by-products sawdust, formed during sawing and mandarin peel which are agricultural by products. The boards were manufactured by mixing the sawdust and mandarin peel at different mixing ratio and density. In terms of changes in surface temperature of ceramics, we could found that the velocity was fast in the early time of heat transfer until 10 minutes and after that the velocity increased but not very fast. At the elapsed time of 30 minutes, the surface temperature of ceramics increased with the carbonization temperature and rate of mandarin peel addition did not influence the surface temperature. Far - infrared emissivity had no constant tendency in rate of mandarin peel addition, it decreased with increase of carbonization temperature.

A Study on Measuring the Temperature and Revising the Result When Measuring the Temperature of NPP Pipes Using Infrared Thermography (적외선 열화상 기술을 이용한 원자력 배관의 온도측정과 보정에 관한 연구)

  • Kim, Kyeong-Suk;Jung, Hyun-Chul;Pack, Chan-Joo;Kim, Dong-Soo;Jung, Duk-Woon;Chang, Ho-Sub
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.421-426
    • /
    • 2009
  • The emissivity is different because the emitted angle changes according to the position of the infrared thermography camera and object. Because of this, the temperature distribution expressed when measuring the temperature by using the infrared thermography system is not the accuracy temperature. Although the real surface temperature is constant, the temperature measured by using infrared thermography camera have error in accordance with the value of emissivity. In this paper, the temperatures of the round cylindrical object and the flat square object that heated to the equal temperature were measured by infrared thermography camera. The emissivity calibration formula and correction table are made with the affect of the view angle and emission angle form the surface temperature value. The error of measured temperature values are corrected by using the emissivity calibration formula and correction table, and apply to defect detection of the nuclear power plant pipe. From the calibration method, reliability surface temperature values were obtained.

Infrared Signature Analysis on Armored Vehicle Applied with Emissivity Controlled Structure (장갑 차량의 방사율 제어구조 적용에 따른 적외선 신호 분석)

  • Kim, Taeil;Kim, Taehwan;Bae, Ji-Yeul;Jung, Daeyoon;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.179-184
    • /
    • 2017
  • Due to rapid development of infrared guided weapon, survivability of armored vehicle is severely threatened. Hence, reduction of susceptibility by lowering infrared signature level is essential to enhance survivability of the vehicle. For this purpose, numerical analysis is conducted to analyze time and spatial characteristics of infrared signature of the vehicle when surface emissivity changes in this study. The analysis shows that the emissivity which produces minimum contrast radiant intensity is significantly altered by time and detecting position. Based on the result, it is concluded that the controlled structures which have different emissivity should be adopted at different region of the vehicle to effectively decrease infrared signature level.

Study on the Effect of Emissivity for Estimation of the Surface Temperature from Drone-based Thermal Images (드론 열화상 화소값의 타겟 온도변환을 위한 방사율 영향 분석)

  • Jo, Hyeon Jeong;Lee, Jae Wang;Jung, Na Young;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.1
    • /
    • pp.41-49
    • /
    • 2022
  • Recently interests on the application of thermal cameras have increased with the advance of image analysis technology. Aside from a simple image acquisition, applications such as digital twin and thermal image management systems have gained popularity. To this end, we studied the effect of emissivity on the DN (Digital Number) value in the process of derivation of a relational expression for converting DN to an actual surface temperature. The DN value is a number representing the spectral band value of the thermal image, and is an important element constituting the thermal image data. However, the DN value is not a temperature value indicating the actual surface temperature, but a brightness value indicating high and low heat as brightness, and has a non-linear relationship with the actual surface temperature. The reliable relationship between DN and the actual surface temperature is critical for a thermal image processing. We tested the relationship between the actual surface temperature and the DN value of the thermal image, and then the radiation adjustment was performed to better estimate actual surface temperatures. As a result, the relation graph between the actual surface temperature and the DN value similarly show linear pattern with the relation graph between the radiation-controlled non-contact thermometer and the DN value. And the non-contact temperature after adjusting the emissivity was closer to the actual surface temperature than before adjusting the emissivity.

Analysis on Surface Temperature Control of an Insulated Vertical Wall Under Thermal Radiation Environment (단열재가 부착된 수직벽 표면의 온도제어 해석)

  • Kang, Byung-Ha;Pi, Chang-Hun;Kim, Suk-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.4
    • /
    • pp.323-329
    • /
    • 2012
  • In this study, a rational procedures for estimation of insulation thickness of a vertical wall for condensation control or personnel protection has been investigated. Design parameters are height of the wall, thermal conductivity, emissivity, and operating temperatures. The results indicated that the surface emissivity plays a very important role in the design of insulation for the purpose of surface temperature control, especially in natural convection situation. radiation heat transfer coefficients for some new insulation material surface, such as elastomers, estimated to be more than 90% of the total surface heat transfer coefficient.