• 제목/요약/키워드: surface emissivity

검색결과 143건 처리시간 0.026초

열 방사율 측정시 표면거칠기의 영향 (The Effect of Surface Roughness on Measuring Thermal Emissivity)

  • 오기수;배신철
    • Journal of Welding and Joining
    • /
    • 제21권7호
    • /
    • pp.65-70
    • /
    • 2003
  • Thermal emissivity is generally affected by surface situation of material such as roughness. In this study, the effect of surface roughness on measuring thermal emissivity is experimented. And emissivity measurement method and equipment using hemisperical mirror is also reviewed. As the result of this research, thermal emissivity increased as long as increasing surface roughness. So, surface roughness is a essential check point when we measure the emissivity.

IMPROVING EMISSIVITY ESTIMATION IN RETRIEVING LAND SURFACE TEMPERATURE WITH MODIS DATA

  • Lin, Tang-Huang;Liu, Gin-Rong;Tsai, Fuan;Hsu, Ming-Chang
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.337-340
    • /
    • 2007
  • Many researches conducted to investigate the relationship between surface emissivity and surface temperature in the past two decades and pointed out that the emissivity play a key role in applying remote sensing data to retrieve surface temperature. The task of surface temperature estimation is so important in many research fields, such as earth energy budgets, evapotranspiration, drought, global change and heat island effect. Therefore, it is indispensable to develop an effective and accurate technique to estimate the emissivity for accurate surface temperature estimations. This study developed an improved emissivity estimation technique for the use of surface temperature retrievals with MODIS data. The result of applying this improved technique using Band 31 of MODIS shows that the accuracy of estimated surface temperatures will be improved. This study also uses MODIS data observed in 2005 to establish the relationship between the surface emissivity correction factor and NDVI. Through the use of these correction factors, the land surface temperature can be retrieved more accurate with MODIS data.

  • PDF

Retrieval of emissivity and land surface temperature from MODIS

  • Suh Myoung-Seok;Kang Jeon-Ho;Kim So-Hee;Kwak Chong-Heum
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.165-168
    • /
    • 2005
  • In this study, emissivity and land surface temperature (LST) were retrieved using the previously developed algorithms and Aqua/MODIS data. And sensitivity of estimated emissivity and LST to the predefined values, such as land cover, normalized difference vegetation index (NOVI) and spectral emissivity were investigated. The methods used for emissivity and LST were vegetation cover method (VCM) and four different split-window algorithms. The spectral emissivity retrieved by VCM was not sensitive to the NOVI error but more sensitive to the land cover error. The comparison of LST showed that the LST was systematically different without regard to the land cover and season. And the LST was very sensitive to the emissivity error excepting the Uliveri et al. This preliminary result indicates that more works are needed for the retrieval of reliable LST from satellite data.

  • PDF

EXPERIMENTAL STUDY ON MEASUREMENT OF EMISSIVITY FOR ANALYSIS OF SNU-RCCS

  • CHO YUN-JE;KIM MOON OH;PARK GOON-CHERL
    • Nuclear Engineering and Technology
    • /
    • 제38권1호
    • /
    • pp.99-108
    • /
    • 2006
  • SNU-RCCS is a water pool type RCCS (Reactor Cavity Cooling System) developed for VHTR (Very High Temperature Reactor) application by SNU (Seoul National University). Since radiation heat transfer is the major process of passive heat removal in a RCCS, it is important to determine the precise emissivity of the reactor vessel. Review studies have used a constant emissivity in the passive heat removal analysis, even though the emissivity depends on many factors such as temperature, surface roughness, oxidation level, wavelength, direction, atmosphere conditions, etc. Therefore, information on the emissivity of a given material in a real RCCS is essential in order to properly analyze the radiation heat transfer in a VHTR. The objectives of this study are to develop a method for compensation of the factors affecting the emissivity measurement using an infrared thermometer and to estimate the true emissivity from the measured emissivity via the developed method, especially in the SNU-RCCS environment. From this viewpoint, we investigated factors such as the attenuation effect of the window, filling gas, and the effect of background radiation on the emissivity measurements. The emissivity of the vessel surface of the SNU-RCCS facility was then measured using a sight tube. The background radiation was subsequently removed from the measured emissivity by solving a simultaneous equation. Finally, the calculated emissivity was compared with the measured emissivity in a separate emissivity measurement device, yielding good agreement with the emissivity increase with vessel temperature in a range of 0.82 to 0.88.

LED 조명 모듈 표면의 방사율 측정에 관한 연구 (Measurement of the Surface Emissivity of the LED Lighting Module)

  • 박진성;허창수
    • 한국전기전자재료학회논문지
    • /
    • 제26권6호
    • /
    • pp.493-501
    • /
    • 2013
  • LED lighting is sensitive because it made by semiconductor. So it has been researched about radiation of heat technologies for a long time. In addition, measurement and assessment a radiation of heat also conducted. It is necessary to get a date of accuracy temperature on the board after LED driven for measuring Junction temperature of the LED Lighting. For this research, we use 5 chip which is 4 W power on top of LED lighting board made by aluminum. Thermal camera effects to emissivity depending on material and property of the surface in LED board because it determines thermal energy which emitted from material surface. it is not only thermal camera has not a standard about emissivity. It has an error of temperature when emissivity was measured by thermal camera. we confirmed that emissivity and reflected temperature depending on color and quality of the surface throughout experiment.

Surface Emissivity Derived From Satellite Observations: Drought Index

  • Yoo, Jung-Moon;Yoo, Hye-Lim
    • 한국지구과학회지
    • /
    • 제27권7호
    • /
    • pp.787-803
    • /
    • 2006
  • The drought index has been developed, based on a $8.6{\mu}m$ surface emissivity in the $8-12{\mu}m$ MODIS channels over the African Sahel region (10-20 N, 13 W-35 W) and the Seoul Metropolitan Area (SMA: 37.2-37.7 N, 126.6-127.2 E). The emissivity indicates the $SiO_2$ strength and can vary interannually by vegetation, water vapor, and soil moisture, as a potential indicator of drought conditions. In a well-vegetated region close to 10 N of the Sahel, the Normalized Difference Vegetation Index (NDVI) showed high sensitivity, while the emissivity did not. On the other hand, the NDVI experienced negligible variability in a poorly vegetated region near 20 N, while the emissivity reflected sensitively the effects of atmospheric water vapor and soil moisture conditions. Seasonal variations of the emissivity (0.94-0.97) have been examined over the SMA during the 2003-2004 period compared to NDVI (or Enhanced Vegetation Index; EVI). Here, the dryness was more severe in urban area with less vegetation than in suburban area; the two areas corresponded to the north and south of the Han river, respectively. The emissivity exhibiting a significant spatial correlation of ${\sim}0.8$ with the two indices can supplement their information.

양극산화된 알루미늄의 적외선 복사특성 연구 (A Study on the Infrared Radiation Properties of Anodized Aluminum)

  • 강병철;최정진;김기호
    • 한국표면공학회지
    • /
    • 제35권3호
    • /
    • pp.149-157
    • /
    • 2002
  • Spectral emissivity depends on the surface conditions of the materials. The mechanisms that affect the spectral emissivity in anodic oxide films on aluminum were investigated. The aluminum specimens were anodized in a sulfuric acid solution and the thickness of the resulting oxide film formed changed with the anodizing time. FT-IR spectrum analysis identified the anodic oxide film as boehmite ($Al_2$$O_3$.$H_2$O). Both the infrared emisivity and reflectivity of the anodized aluminum were affected by the structure of the anodic oxide film because Al-OH and Al-O-Al have a pronounced absorption band in the infrared region of the spectrum. The presence of an anodic oxide film on aluminum caused a rapid drop in the infrared reflectivity. An aluminum surface in the clean state had an emissivity of approximately 0.2. However, the infrared emissivity rapidly increased to 0.91 as the thickness of the anodic oxide film increased.

복사효과를 포함하는 수평관 표면의 온도제어 (Surface Temperature Control of an Insulated Horizontal Pipe under Thermal Radiation Environment)

  • 강병하;피창헌;김석현
    • 설비공학논문집
    • /
    • 제23권1호
    • /
    • pp.54-60
    • /
    • 2011
  • Procedures for estimation of insulation thickness for a horizontal pipe for condensation control or personnel protection has been investigated, parallel to the previous work of a vertical wall case. Parameters include pipe diameter, emissivity, thermal conductivity, and operating temperatures. The results indicated that the surface emissivity plays a very important role in the design of insulation, specially for the case of high temperature application with low Bi. The effect of surface radiation in such case could be up to 65% of the total. Required insulation thickness for the surface temperature control increases as pipe diameter increases and as surface emissivity decreases. Adequate revision of specifications or standards to include newly invented insulation materials with high emissivity has been also suggested.

Estimation of surface emissivity for conduction-cooled metal plates at cryogenic temperatures

  • Chang, Ho-Myung;Lee, Gyong-Hyon
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제10권2호
    • /
    • pp.38-41
    • /
    • 2008
  • The relation between surface emissivity and temperature distribution is experimentally and analytically investigated for a conduction-cooled metal plate in vacuum. Experimental set-up consists of a rectangular metal plate placed vertically in a cryostat and thermally anchored to the coldhead of a GM cryocooler at the top. Temperature is measured at a number of locations over the plate with platinum resistors mounted on the plate. A parallel analysis on the balance of heat conduction through the plate and thermal radiation on its surface is performed to numerically calculate the temperature distribution having the same boundary conditions as experiment. By comparing the two results, an average emissivity of the plate is roughly estimated for different metal plates and different surface conditions. The estimated emissivity in present study is less than the listed values for highly polished stainless steel, and meets a fairly good agreement for oxidized copper surface.

반사법에 의한 재료표면의 적외선 방사율 측정에 관한 연구 (A Study on Infrared Emissivity Measurement of Material Surface by Reflection Method)

  • 강병철;김상명;최정윤;김군옥
    • 비파괴검사학회지
    • /
    • 제30권5호
    • /
    • pp.484-488
    • /
    • 2010
  • 적외선 열화상 카메라를 이용하여 온도를 측정할 때는 측정 대상물질의 적외선 방사율이 중요하다. 적외선 방사율은 흑체와 물체의 적외선 방사 강도비로 구할 수 있으나, 상온에서는 배경의 영향으로 인해 측정하는 것은 용이하지 않다. 따라서 FT-IR를 이용하여 반사법에 의해 강판 및 강판에 코팅된 도료의 적외선 반사율을 측정하고 적외선 방사용을 구하였다. 연마된 강판은 0.06 ~ 0.10의 적외선 방사율을 나타내고 있으며, 비연마 강판은 표면조도에 의해 광학적 특성의 변화로 인한 적외선 방사율 측정에 오차가 발생하였다. 강판에 코팅된 투명도료는 적외선 흡수로 인해 방사율은 0.50 ~ 0.84 정도로 높아졌으며, 도료의 적외선 흡수 밴드에 의해 파장에 따라 방사율도 변한다. 이 실험을 통해 재료표변의 재질, 두께, 조도 등 표면 상태에 따라 적외선의 광학적 특성이 변하는 것을 확인할 수 있었다. 또한 반사법은 금속 및 금속에 코팅된 도료의 적외선 방사율 측정에 유용한 것으로 판단되며, 측정된 적외선 방사율을 적외선 열화상에 제공함으로서 측정온도의 오차를 줄일 수 있다.