• Title/Summary/Keyword: surface cooling

Search Result 1,479, Processing Time 0.033 seconds

Cooling Performance of Air/Water Mist Jet Impinging for a Rapid Thermal Annealing System (급속 열처리 시스템을 위한 물/공기 액적류 충돌 제트의 냉각 특성에 관한 연구)

  • Lee, Jun Kyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.68-74
    • /
    • 2015
  • In the present work, a series of numerical calculations have been conducted on the cooling of a hot surface using an air/water mist jet. In some cooling processes, such as in the glass-tempering process, direct contact between the cold water drops and the hot surface should be avoided, because this may cause surface cracks due to the sharp temperature gradients. Thus, the main focus of this study is finding the appropriate operating conditions for maximum cooling without direct contact between the drops and the surface. A series of numerical experiments have been performed, and, at the same time, those results were compared with those of the previous experiments for verification purposes. The effects of droplet impinging velocity, hot plate temperature, and liquid loading ratio for mono-dispersed drops of various sizes were studied in detail.

An Experimental Study on Low-Temperature Behavior of Stratified Fluids in a Square Cavity with Upper Cooling Surface (상부에 냉각면이 있는 정방형내 이종유체의 저온거동에 관한 실험적 연구)

  • Lee, D.S.;Kim, B.C.
    • Solar Energy
    • /
    • v.20 no.1
    • /
    • pp.55-62
    • /
    • 2000
  • An experimental study on the stratified fluids with water and silicon oil of same volume in the cavity with upper cooling surface was carried out to investigate the flow characteristics, heat transfer through the interface of fluids, and the applications of thermal behaviors in a square cavity. The experiments were performed with variation of initial temperature and cooling surface temperature. The temperature drop of oil was faster than that of water and freezing was initiated from the interface of oil and water and propagated downward. For the water above $4^{\circ}C$, the cooling rate was faster than that below $4^{\circ}C$ and showed almost same temperature distribution but for the water that of below $4^{\circ}C$, it showed the stable stratified temperature distribution. The lower the initial temperature and the higher the cooling surface temperature was, the longer the supercooling duration.

  • PDF

A study on the transient cooling process of a vertical-high temperature tube in an annular flow channel (환상유로에 있어서 수직고온관의 과도적 냉각과정에 관한 연구)

  • 정대인;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.156-164
    • /
    • 1986
  • In the case of boiling on high temperature wall, vapor film covers fully or parcially the surface. This phenomenon, film boiling or transition boiling, is very important in the surface heat treatment of metal, design of cryogenic heat exchanger and emergency cooling of nuclear reactor. Mainly supposed hydraulic-thermal accidents in nuclear reactor are LCCA (Loss of Coolant Accident) and PCM (Power-Cooling Mismatch). Recently, world-wide studies on reflooding of high temperature rod bundles after the occurrence of the above accidents focus attention on wall temperature history and required time in transient cooling process, wall superheat at rewet point, heat flux-wall superheat relationship beyond the transition boiling region, and two-phase flow state near the surface. It is considered that the further systematical study in this field will be in need in spite of the previous results in ref. (2), (3), (4). The paper is the study about the fast transient cooling process following the wall temperature excursion under the CHF (Critical Heat Flux) condition in a forced convective subcooled boiling system. The test section is a vertically arranged concentric annulus of 800 mm long and 10 mm hydraulic diameter. The inner tube, SUS 304 of 400 mm long, 8 mm I.D, and 7 mm O.D., is heated uniformly by the low voltage AC power. The wall temperature measurements were performed at the axial distance from the inlet of the heating tube, z=390 mm. 6 chromel- alumel thermocouples of 76 .mu.m were press fitted to the inner surface of the heating tube periphery. To investigate the heat transfer characteristics during the fast transient cooling process, the outer surface (fluid side) temperature and the surface heat flux are computed from the measured inner surface temperature history by means of a numerical method for inverse problems of transient heat conduction. Present cooling (boiling) curve is sufficiently compared with the previous results.

  • PDF

A Study on the Heat Transfer Characteristics of the Radiant Chilled Ceiling Panel for Space Cooling (냉각된 복사천장패널의 열전달 특성에 관한 연구)

  • Lee, Tae-Won;Hwang, In-Ju
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.164-169
    • /
    • 2001
  • There is a chilled ceiling panel which carries out the air conditioning by radiation and convection between the room and cold ceiling panel surface. In order to verify heat transfer characteristics between them in cooling system with radiant chilled ceiling panel, analytical and experimental studies were performed for various design and operating parameters such as tube space and diameter, inlet water temperature, mass flow rate, cooling load, and so on. In this study, we found that the tube space and inlet water temperature were more important elements than the tube diameter and water flow rate for the performance of radiant chilled ceiling panel. The cooling capacity of the radiant chilled ceiling panel had the maximum value of $65W/m^{2}$ because the highest cooling capacity was limited by the condensation on the panel surface. The results of comparison between numerical analysis and experiment showed a resonable agreement qualitatively, especially for low cooling capacity.

  • PDF

A Study On the Cooling Effect of the Floating Horizontal Solar Cell

  • Jae-hyuk Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.2
    • /
    • pp.182-186
    • /
    • 2023
  • In this study, we measured the power and temperature of the floating horizontal solar cell in a coastal lagoon and compared with those of ground solar cell and water platform solar cell. Because the bottom surface of the floating horizontal solar cell was contacting the water, cooling effect was expected stronger than other cells. As a result of the measurement, the power of floating horizontal cell was 11.7% higher than that of the ground cell and 15% higher than that of the water platform cell. During the measurement, it was observed that water waves were continuously flowed on the top surface of floating horizontal cell by the wind, and it could be assumed that the cooling effect occurred not only on the bottom surface of the cell but also on the top surface. In order to analyze the cooling effect and power increasing of the horizontal cell in the wave situation, we measured power and temperature of the cell while generating artificial waves in a laboratory equipped with Zenon lamp as a solar simulator. At the height of thewater surface, the power of the cell with waves was 3.7% higherthan without waves and temperature was 4.6℃ lower. At 1 cm and 2 cm below the watersurface, power of the cell with waves was decreased by 14% and 11% than without waves while temperature was same . At 3 cm below the water surface, there was no effect of waves.

Modeling wind ribs effects for numerical simulation external pressure load on a cooling tower of KAZERUN power plant-IRAN

  • Goudarzi, Mohammad-Ali;Sabbagh-Yazdi, Saeed-Reza
    • Wind and Structures
    • /
    • v.11 no.6
    • /
    • pp.479-496
    • /
    • 2008
  • In this paper, computer simulation of wind flow around a single cooling tower with louver support at the base in the KAZERUN power station in south part of IRAN is presented as a case study. ANSYS FLOTRAN, an unstructured finite element incompressible flow solver, is used for numerical investigation of wind induced pressure load on a single cooling tower. Since the effects of the wind ribs on external surface of the cooling tower shell which plays important role in formation of turbulent flow field, an innovative relation is introduced for modeling the effects of wind ribs on computation of wind pressure on cooling tower's shell. The introduced relation which follows the concept of equivalent sand roughness for the wall function is used in conjunction with two equations ${\kappa}-{\varepsilon}$ turbulent model. In this work, the effects of variation in the height/spacing ratio of external wind ribs are numerically investigated. Conclusions are made by comparison between computed pressure loads on external surface of cooling tower and the VGB (German guideline for cooling tower design) suggestions.

Comparison of the Characteristics of Spray Cooling between Water and Nanofluid Sprays (물과 알루미나 나노유체 분무의 분무냉각특성 비교)

  • Kang, B.S.;Lee, S.P.
    • Journal of ILASS-Korea
    • /
    • v.19 no.2
    • /
    • pp.88-93
    • /
    • 2014
  • Nanofluids is that metallic or nonmetallic nanometer-sized particles are dispersed in liquid and they can be used in various fields to increase the heat transfer rate. This study conducted experiments to evaluate whether the cooling efficiency of nanofluids is better than that of water in spray cooling. A heated surface was designed and fabricated to make the temperature distribution be linear, which was confirmed by three thermocouple measurements under the heated surface. Spray cooling experiments were conducted using water, 0.2% wt. (weight), and 0.5% wt. $Al_2O_3$ nanofluids at the pressure of 0.2 MPa and 0.3 MPa. Based on the results, it is shown that the cooling efficiency of nanofluids is higher than that of water especially in the region of single phase heat transfer. As a result, we can expect that nanofluids can be used as efficient coolants in the cooling of electronic packages where the temperature of the heated surface is not high enough for boiling incipience.

A Study of the Surface Temperature Reduction Using Pipe Cooling System in Asphalt Pavement (아스팔트 도로포장에 물순환 파이프 시스템을 이용한 표면온도저감에 관한 연구)

  • Yoon, Yong Kyu;Park, Kyung Won;Lee, Suk Keun
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.75-86
    • /
    • 2013
  • PURPOSES: The purpose of asphalt pavement reducing surface temperature by using Pipe cooling system is to make pleasant city life environment. METHODS: We considered building condition to lay the pipes under asphalt pavement and figured out that temperature reducing effect with pipe cooling system. In addition, we guessed rutting through wheel tracking test with a laid the pipes under asphalt mixture and performed fatigue cracking through a flexural fatigue test for performance evaluation of pipe cooling system. RESULTS: When pipe cooling system worked, the temperature of pavement model reduced quickly in test. The system can turn down the degree by 4 or 5 quickly as well. It didn't affect rutting to lay the pipes under the pavement, but it can get damaged to asphalt pavement in early stage by the result of performance evaluation. CONCLUSIONS: We figured out that pipe cooling system can turn down the temperature of aspalt pavement surface through tests. We suggest that pipe cooling system should be considered one of the effective way to solve urban heat island problem.

Experimental Facility for Measuring the Cooling Performance of a Piezoelectric Fan (피에조 팬 냉각 성능 측정을 위한 실험장치 구축)

  • Oh, Myong Hun;Park, Soo Hyun;Ko, Jae Ik;Choi, Minsuk
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.3
    • /
    • pp.52-58
    • /
    • 2018
  • In this study, an experimental facility has been built to measure the cooling performance of a piezoelectric fan. The facility is composed of a heat source made of $50{\mu}m$ Ni-Cr foil, a piezoelectric fan and a rotary fan for cooling the heat source. For two cases where the foil is vertical or horizontal, the surface temperature on the foil has been measured by an IR camera with and without cooling and the cooling performance of both fans has been analyzed. With cooling by both fans, the rotary fan lowers the surface temperature of the foil as a whole, while the piezoelectric fan lowers the surface temperature at the center of the foil locally. It is also found that the cooling effectiveness of the piezoelectric fan is higher on the horizontal foil than on the vertical foil because the natural convection interferes with the jet from the piezoelectric fan.

Characteristics of wind loading on internal surface and its effect on wind-induced responses of a super-large natural-draught cooling tower

  • Zou, Yun-feng;Fu, Zheng-yi;He, Xu-hui;Jing, Hai-quan;Li, Ling-yao;Niu, Hua-wei;Chen, Zheng-qing
    • Wind and Structures
    • /
    • v.29 no.4
    • /
    • pp.235-246
    • /
    • 2019
  • Wind loading is one of important loadings that should be considered in the design of large hyperbolic natural-draught cooling towers. Both external and internal surfaces of cooling tower are under the action of wind loading for cooling circulating water. In the previous studies, the wind loads on the external surface attracted concernedly attention, while the study on the internal surface was relatively ware. In the present study, the wind pressure on the internal surface of a 220 m high cooling tower is measured through wind tunnel testing, and the effect of ventilation rate of the packing layer on internal pressure is a major concern. The characteristics of internal wind pressure distribution and its effect on wind-induced responses calculated by finite element method are investigated. The results indicate that the wind loading on internal surface of the cooling tower behaves remarkable three-dimensional effect, and the pressure coefficient varies along both of height and circumferential directions. The non-uniformity is particularly strong during the construction stage. Analysis results of the effect of internal pressure on wind-induced responses show that the size and distribution characteristics of internal pressure will have some influence on wind-induced response, however, the outer pressure plays a dominant role in the wind-induced response of cooling tower, and the contribution of internal pressure to the response is small.