• Title/Summary/Keyword: surface construction

Search Result 3,099, Processing Time 0.029 seconds

Case Study on the Improvement of Pollutant Removal Efficiency in Sihwa Constructed Wetland (시화호 인공습지의 수질정화기능 향상을 위한 사례연구)

  • Choi, Don-Hyeok;Kang, Ho;Choi, Kwang-Soon
    • Journal of Wetlands Research
    • /
    • v.12 no.2
    • /
    • pp.25-33
    • /
    • 2010
  • Three plans(induction of water flow, supply of oxygen into water, control of fish causing resuspension of solids) proposed to improve the pollutant removal efficiency of Sihwa Constructed Wetland(CW) were estimated by considering the their efficiency and application to the wetland. After construction of facility for induction of water flow in lower part(W 122m${\times}$L 103m) of the wetland, the mean removal efficiencies of BOD, SS, TN and TP were in range of 12.8~37.4% and BOD was showing the highest efficiency. This result indicates that water flows is one of very important factors in the pollutant removal of wetland, especially near the outlet of a large scale wetland such as Sihwa CW. Dissolved oxygen(DO) concentrations after operation of two oxygen supply systems such as Air Bubble Diffuser and Surface Aeration System increased 15.5% and 27.2%, respectively. For maintaining effective DO concentration in Sihwa CW, the operation of oxygen supply system may be desirable during midnight to dawn in the location in which DO concentration is not enough, for instance less than 2 mg/L in CW. In experiments of the fish removal from Sihwa CW, the mean turbidity was lower in test site(6.2 NTU) than control site(10.6). The removal efficiency of thurbidity by th fish removal from the wetland was 41.5%. Therefore, a relevant fish management through a periodical monitoring of fish and turbidity is needed.

Enhancement of FLDWAV Model for Its Application to the Main Reach of the Han River (한강 본류에의 적용을 위한 FLDWAV 모형의 개선)

  • Jun, Kyung-Soo;Kim, Jin-Soo;Lee, Sang-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.2 s.175
    • /
    • pp.135-146
    • /
    • 2007
  • FLDWAV model was modified such that it can adequately simulate the effect of Jamsil and Singok submerged weirs in the main reach of the Han River. The enhanced model combines weir-type discharge equations for overflow at fixed weir and Manning equation for fluvial-type flow at the movable weir. Equations for weir overflow include those for submerged weir flow and free overflow. Gates of the movable weir may be open or closed for the simulation. In order to test the simulation capabilities, the enhanced model was applied for various flow conditions at submerged weirs. Backwater effect due to Jamsil and Singok submerged weirs were well simulated. Simulations were carried out for spring and neap tides extracted from artificial tide generated by combining $M_2\;and\;S_2$ tidal constituents. Simulation results cleared indicated that tidal effect extends further upstream as the flood discharge decreases. Low flow simulation capabilities of the enhanced model was tested. Discontinuities of water surface elevation due to the submerged weirs were successively simulated.

Research Background and Plan of Enhanced Geothermal System Project for MW Power Generation in Korea (MW급 EGS 지열발전 상용화 기술개발사업의 추진 배경 및 계획)

  • Yoon, Woon-Sang;Song, Yoon-Ho;Lee, Tae-Jong;Kim, Kwang-Yeom;Min, Ki-Bok;Cho, Yong-Hee;Jeon, Jong-Ug
    • Tunnel and Underground Space
    • /
    • v.21 no.1
    • /
    • pp.11-19
    • /
    • 2011
  • Geothermal energy is believed to be an important source among the renewable energy sources to provide the base load electricity. Although there has been a drastic increase in the use of geothermal heat pump in Korea, there is no geothermal power plant in operation in Korea. Fortunately, the first EGS (Enhanced Geothermal System) Project in Korea has started in Dec 2010. This five year project is divided into two stages; two years for exploration and drilling of 3 km depth to confirm the minimum target temperature of 100 degrees, and another three years composed drilling 5 km doublet, hydraulic stimulation of geothermal reservoir with expected temperature of 180 degrees (40 kg/s) and construction of MW geothermal power plant in the surface. This EGS project would be a landmark effort that invited a consortium of industry, research institutes and university with expertises in the fields of geology, hydrogeology, geophysics, geomechanics and plant engineering.

Detection and Analysis of Three-dimensional Changes in Haeundae Marine and Beach Topography using RS and GIS Technology (RS.GIS 기법을 활용한 해운대 해저.해빈지형의 3차원 입체변화 탐지 및 분석)

  • Hong, Hyun-Jung;Choi, Chul-Uong;Han, Kyung-Soo;Jeon, Seong-Woo
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.4
    • /
    • pp.243-253
    • /
    • 2006
  • As the ocean and beaches have suffered from the losses of sand, it is necessary to monitor the zones that are prone to erosion continuously with the object of the long-term management. However, each ward offices are busy trying to supply sand without analyzing the marine and beach topographic changes. Therefore a long term effect of erosion has not been shown. In this study, we proposed methods to collect accurate spatial data of the oceans and beaches through sounding and GPS surveys, and detected and analyzed topographic changes quantitatively and qualitatively, by using an integrated RS and GIS techniques. The result of this study revealed that the marine topography has been eroded for 25 years, because of the straight construction of the river and the vast development of urban features, in addition with change of the mean depth 0.40 m, the water surface area 11,028 $m^2$, and submarine volume 2,207,884 $m^3$. The beach topography has accreted for 5 years and the change of the mean elevation is 0.27m, the area 6,501 $m^2$, and volume 25,667 $m^3$, because of the installation of geogrids and the seasonal effect. We conducted monitoring works on the topographic survey of the ocean and beaches and analyzed the present condition of the coastal erosions. Therefore, it is estimated that necessary information on the supply of sand, the safe marine leisure and the management of bating place could be provided.

Application of Analysis Models on Soil Water Retention Characteristics in Anthropogenic Soil (인위적으로 변경된 토양에서의 수분보유특성 해석 모형의 적용)

  • Hur, Seung-Oh;Jeon, Sang-Ho;Han, Kyung-Hwa;Jo, Hee-Rae;Sonn, Yeon-Kyu;Ha, Sang-Keun;Kim, Jeong-Gyu;Kim, Nam-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.823-827
    • /
    • 2010
  • This study was conducted to assess the propriety of models for soil water characteristics estimation in anthropogenic soil through the measurement of soil water content and soil water matric potential. Soil profile was characterized with four different soil layers. Soil texture was loamy sand for the first soil layer (from soil surface to 30 cm soil depth), sand for the second (30~70 cm soil depth) and the third soil layers (70~120 cm soil depth), and sandy loam for the fourth soil layer (120 cm < soil depth). Soil water retention curve (SWRC), the relation between soil water content and soil water matric potential, took a similar trend between different layers except the layer of below 120 cm soil depth. The estimation of SWRC and air entry value was better in van Genuchten model by analytical method than in Brooks-Corey model with power function. Therefore, it could be concluded that van Genuchten model is more desirable than Brook-Corey model for estimating soil water characteristics of anthropogenic soil accumulated with saprolite.

Analysis of Helical Pile Behavior in Sands Varying Helix Pitch Based on Numerical Analysis Results (사질토에 근입된 헬릭스 피치에 따른 헬리컬 파일의 수치해석적 거동분석)

  • Bak, Jongho;Lee, Kicheol;Choi, Byeong-Hyun;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.29-40
    • /
    • 2018
  • Oil sands, which are largely distributed in Canada and Venezuela, are a mixture of crude oil and sandy soils. In order to extract crude oil from oil sands, construction of massive oil sand plants is required. Generally, the typically-used foundation types of the oil sand plant are driven piles and cast-in-place piles. Most of the oil sand plants are located in cold and remote regions. Installation of driven piles in frozen or organic surface soils is difficult due to high resistance and installation equipment accessability, while the cast-in-place pile has concrete curing problem due to cold temperature. Helical pile can be installed quickly and easily using rotation with a little help of vertical load. As the installation of helical pile is available using a small and light-weight installation equipment, accessibility of installation equipment is improved. The helical pile has an advantage of easy removal by rotation in reverse direction compared with that of installation. Furthermore, reuse of removed helical piles is possible when the piles are structurally safe. In this study, the behavior of helical piles varying helix pitch was analyzed based on the numerical analysis results. Numerical model was calibrated based on the results of model helical pile tests in laboratory. The ultimate helical pile loads, the displacement of each helix attached to the shaft of the helical pile, and the load sharing ratio of each helix were analyzed.

Evaluation of Mechanical Test Characteristics according to Welding Position in FCAW Heterojunction (FCAW 이종접합에서 용접자세에 따른 기계적 시험 특성 평가)

  • Cho, Byung-Jun;Lee, Soung-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.649-656
    • /
    • 2019
  • Flux cored arc welding (FCAW), which is used widely in many fields, such as shipyards, bridge structures, construction machinery, and plant industry, is an alternative to shielded metal arc welding (SMAW). FCAW is used largely in the welding of carbon and alloy steel because it can be welded in all poses and obtain excellent quality in the field under a range of working conditions. In this study, the mechanical properties of welded parts were analyzed after different welding of SS400 and SM490A using FCAW. The following conclusions were drawn. The tensile test results satisfied the KS standard tensile strength in the range of 400~510 N/mm2 in all welding positions. The bending test confirmed that most of the specimens did not show surface breakage or other defects during bending and exhibited sufficient toughness, even after plastic deformation. The hardness test results were lower than the standard value of 350 Hv of KS B 0893. Similar to the hardness test, were greater than the KS reference value. The macro test revealed no internal flaws, non-metallic inclusions, bubbles or impurities on the entire cross section of the weld, and there were no concerns regarding lamination.

Synthesis of melamine-type functional grinding aids and physical properties of cement applied to them (멜라민계 기능성 분쇄조제의 합성 및 이를 적용한 시멘트의 물리적 특성)

  • Choi, Byung-Wook;Chang, Chun-Ho;Jung, Yong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.126-133
    • /
    • 2019
  • This study intended to manufacture high quality cement, such as solving the quality problem of cement which has been emerging recently, along with improving grinding efficiency. To this end, the synthesis of melamine-functional pulverizing agents and the physical properties of cement applying them were reviewed and the reaction was carried out by dividing the melamine airborne compound into three stages of polymerization using methylation, sulfonation, and acid catalyst to improve the crushing efficiency of cement clinker and the physical properties of manufactured cement. The obtained melamine type copolymer was applied to the grinding process of cement clinker. And it's grinding efficiency and compressive strength were compared with DEG(diethylene glycol) and TIPA(triisopropanol amine). When it comes to the grinding efficiency, by lowering surface energy with stable adsorption from organic polymer to cement particles, the fineness showed 4-6% up. In the meantime, the compression strength hiked 30% from its initial strength compared to the conventional DEG. At the age of 28days, the strength showed approximately 13% improvement. Therefore, it is confirmed that the overall quality has been elevated in comparison with the conventional one.

Theoretical and experimental studies on influence of electrode variations in electrical resistivity survey for tunnel ahead prediction (터널 굴착면 전방조사를 위한 전기비저항 탐사에서 전극의 변화가 미치는 영향에 대한 이론 및 실험연구)

  • Hong, Chang-Ho;Chong, Song-Hun;Hong, Eun-Soo;Cho, Gye-Chun;Kwon, Tae-Hyuk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.2
    • /
    • pp.267-278
    • /
    • 2019
  • Variety of tunnel ahead prediction methods have been performed for safe tunnel construction during tunnel excavation. Pole-pole array among the electrical resistivity survey, which is one of the tunnel ahead prediction method, has been utilized to predict water-bearing sediments or weak zone located within 5 times of tunnel diameter. One of the most important processes is the estimation of virgin ground resistivity and it can be obtained from the following process: 1) calculation of contact area between the electrodes and the medium, and 2) assumption of the electrodes as equivalent spherical electrodes which have a same surface area with the electrodes. This assumption is valid in a small contact area and sufficient distance between the electrodes. Since the measured resistance, in general, varies with the electrode size, shape, and distance between the electrodes, it is necessary to evaluate the influence of these factors. In this study, theoretical equations were derived and experimental tests were conducted considering the electrode size, shape, and distance of cylindrical electrodes which is the most commonly utilized electrode shape. Through this theoretical and experimental study, it is known that one should be careful to use the assumption of the equivalent half-spherical electrode with large ratio between the penetrated depth and radius of the cylindrical electrode, as the error may get larger.

Experimental study on the Flexural Capacity of U-shape Composite Beam (U-형 복합보의 휨 성능에 관한 실험적 연구)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.143-149
    • /
    • 2019
  • In this study, a U-shape composite beam was developed to be effectively used for a steel parking lot which is 8m or lower in height. When the U-shape composite beam was applied to a steel parking lot, essential considerations were story-height and long-span. In addition, due to the mixed structural system with reinforced concrete and steel material, the U-shape composite beam needed to have a structural integrity and reliable performance over demand capacity. The main objective of this study was to investigate the performance of the structure consisting of the reinforced concrete (RC) slab and U-shape beam. A U-shape composite beam generally used at a parking lot served as a control specimen. Four specimens were tested under four-point bending. To calculate theoretical values, strain gauges were attached to rebar, steel plate, and concrete surface in the middle of the specimens. As the results, initial yielding strength of the control specimen occurred at the bottom of the U-shaped steel. After yielding, the specimen reached the maximum strength and the RC slab concrete was finally failed by concrete crush due to compressive stress. The structural performance such as flexural strength and ductility of the specimen with the increased beam depth was significantly improved in comparison with the control specimen. Furthermore, the design of the U-shape composite beam with the consideration of flexural strength and ductility was effective since the structural performance by a negative loading was relatively decreased but the ductile behavior was evidently improved.