• 제목/요약/키워드: surface complexation models

검색결과 12건 처리시간 0.019초

Adsorption Behavior and Mechanism of Tripolyphosphate on Synthetic Goethite

  • Zhong, Yong;Sheng, Dandan;Xie, Fazhi;Li, Guolian;Li, Hui;Han, Xuan;Xie, Wenjie;Oh, Won-Chun
    • 한국세라믹학회지
    • /
    • 제56권2호
    • /
    • pp.146-152
    • /
    • 2019
  • In order to study the transport behavior of tripolyphosphate (TPP) in aqueous solutions, the adsorption process of TPP on synthetic goethite, which exists stably in supergene environment, has been systematically studied. The adsorption properties under different conditions (pH, electrolyte presence, and temperature) were investigated. The adsorption of TPP in the presence of humic acid (HA)/fulvic acid (FA) has also been discussed in this paper. The results indicated that the adsorption capacity quickly increased within the first hour and equilibrium was reached within 24 h. The adsorption capacity decreased from 1.98 to 0.27 mg·g-1 upon increasing the pH from 8.5 to 11.0, whereas the adsorption of TPP on goethite hardly changed with increasing electrolyte concentration. The results of analysis of the kinetic and isothermal models showed that the adsorption was more in accord with the pseudo second-order equation and Freundlich model. The adsorption capacity decreased obviously regardless of the order of addition of TPP, HA, and goethite. Subsequent addition of FA led to a large increase in the adsorption capacity, which might be attributed to the adsorption ability of FA. According to the predictions of the kinetic and isothermal models and the spectroscopic evidence (X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FT-IR), and scanning electron microscope (SEM)), the adsorption mechanism may be mainly based on surface complexation and physical adsorption.

Glutamic Acid-Grafted Metal-Organic Framework: Preparation, Characterization, and Heavy Metal Ion Removal Studies

  • Phani Brahma Somayajulu Rallapalli;Jeong Hyub Ha
    • 공업화학
    • /
    • 제34권5호
    • /
    • pp.556-565
    • /
    • 2023
  • Fast industrial and agricultural expansion result in the production of heavy metal ions (HMIs). These are exceedingly hazardous to both humans and the environment, and the necessity to eliminate them from aqueous systems prompts the development of novel materials. In the present study, a UIO-66 (COOH)2 metal-organic framework (MOF) containing free carboxylic acid groups was post-synthetically modified with L-glutamic acid via the solid-solid reaction route. Pristine and glutamic acid-treated MOF materials were characterized in detail using several physicochemical techniques. Single-ion batch adsorption studies of Pb(II) and Hg(II) ions were carried out using pristine as well as amino acid-modified MOFs. We further examined parameters that influence removal efficiency, such as the initial concentration and contact time. The bare MOF had a higher ion adsorption capacity for Pb(II) (261.87 mg/g) than for Hg(II) ions (10.54 mg/g) at an initial concentration of 150 ppm. In contrast, an increased Hg(II) ion adsorption capacity was observed for the glutamic acid-modified MOF (80.6 mg/g) as compared to the bare MOF. The Hg(II) ion adsorption capacity increased by almost 87% after modification with glutamic acid. Fitting results of isotherm and kinetic data models indicated that the adsorption of Pb(II) on both pristine and glutamic acid-modified MOFs was due to surface complexation of Pb(II) ions with available -COOH groups (pyromellitic acid). Adsorption of Hg(II) on the glutamic acid-modified MOF was attributed to chelation, in which glutamic acid grafted onto the surface of the MOF formed chelates with Hg(II) ions.