• Title/Summary/Keyword: surface code

Search Result 995, Processing Time 0.027 seconds

Eulerian-based Numerical Modeling for Impingement Prediction of Supercooled Large Droplets (과냉각대형액적 충돌예측을 위한 오일러리안 기반 수치 모델링)

  • Jung, Sung-Ki;Kim, Ji-Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.8
    • /
    • pp.647-654
    • /
    • 2012
  • Supercooled large droplet issues in aircraft icing have been continually reported due to the important safety considerations. In order to simulate the impingement behavior of large droplets, a two-dimensional and compressible Navier-Stokes code was developed to determine the flow field around the test model. Also, the Eulerian-based droplet impingement model including a semi-empirical approach for the droplet-wall interaction process and droplet break-up was developed. In particular, the droplet-wall interactions were considered as numerical boundary conditions for the droplet impingement simulation in the supercooled large droplet conditions. Finally, the present results were compared with the experimental test data and the LEWICE results. The droplet impingement area and maximum collection efficiency values between present results and wind tunnel data were in good agreements. Otherwise, the inclination of collection efficiency of the present result is over-predicted than the wind tunnel data around a lower surface of the NACA 23012 airfoil.

Understanding Phytosanitary Irradiation Treatment of Pineapple Using Monte Carlo Simulation

  • Kim, Jongsoon;Kwon, Soon-Hong;Chung, Sung-Won;Kwon, Soon-Goo;Park, Jong-Min;Choi, Won-Sik
    • Journal of Biosystems Engineering
    • /
    • v.38 no.2
    • /
    • pp.87-94
    • /
    • 2013
  • Purpose: Pineapple is now the third most important tropical fruit in world production after banana and citrus. Phytosanitary irradiation is recognized as a promising alternative treatment to chemical fumigation. However, most of the phytosanitary irradiation studies have dealt with physiochemical properties and its efficacy. Accurate dose calculation is crucial for ensuring proper process control in phytosanitary irradiation. The objective of this study was to optimize phytosanitary irradiation treatment of pineapple in various radiation sources using Monte Carlo simulation. Methods: 3-D geometry and component densities of the pineapple, extracted from CT scan data, were entered into a radiation transport Monte Carlo code (MCNP5) to obtain simulated dose distribution. Radiation energy used for simulation were 2 MeV (low-energy) and 10 MeV (high-energy) for electron beams, 1.25 MeV for gamma-rays, and 5 MeV for X-rays. Results: For low-energy electron beam simulation, electrons penetrated up to 0.75 cm from the pineapple skin, which is good for controlling insect eggs laid just below the fruit surface. For high-energy electron beam simulation, electrons penetrated up to 4.5 cm and the irradiation area occupied 60.2% of the whole area at single-side irradiation and 90.6% at double-side irradiation. For a single-side only gamma- and X-ray source simulation, the entire pineapple was irradiated and dose uniformity ratios (Dmax/Dmin) were 2.23 and 2.19, respectively. Even though both sources had all greater penetrating capability, the X-ray treatment is safer and the gamma-ray treatment is more widely used due to their availability. Conclusions: These results are invaluable for optimizing phytosanitary irradiation treatment planning of pineapple.

Development of the Phased Array Ultrasonic Test Technique for the Weld Inspection of Reactor Coolant System 3" Branch Connection Lines in Nuclear Power Plants (원자로냉각재계통 3" 분기관 용접부 위상배열초음파탐상검사(PAUT)기법 개발)

  • Lee, Seung-Pyo;Moon, Yong-Sig;Jung, Nam-Du;Cho, Yong-Bae;Kim, Chang-Soo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.4 no.2
    • /
    • pp.40-45
    • /
    • 2008
  • There exist many types of pipe and component fatigue through vibrations, thermal fatigues or shifting. In some cases of thermal stratification/thermal fatigue, pipes & components are receiving thermal stress by means of material expansion and shrinkage by continuous thermal repetitive variation. Small cracks initially occur on the inside surface by thermal stress. These cracks grow in depth the pipe wall and finally come to a rupture. Pipe parts of susceptibility to thermal stratification and thermal fatigue are now being examined by conventional UT(ultrasonic test) as volumetric examination. It is difficult to fully satisfy the code & standards requirements because 3" weldolet weldments of RCS 16" pipe to 3" branch connection lines have complex structural shape. To solve the problems of conventional UT examination, we made a realistic mock-up and UT calibration block. We performed a simulation of phased array UT utilizing CIVA as NDE(Non-Destructive Examination) simulation software. Also we designed phased array UT transducer and wedge, optimal frequency by using simulation data. We performed phased array UT experiment through mock-up including artificial flaws(notch). The phased array UT technique is finally developed to improve the reliability of ultrasonic test at RCS 16" pipe to 3" branch connection weld.

  • PDF

Radiation Shielding Analysis for Conceptual Design of HIC Transport Package (HIC 전용 운반용기 개념설계를 위한 방사선 차례해석)

  • Cho Chun-Hyung;Lee Kang-Wook;Lee Yun-Do;Choi Byung-Il;Lee Heung-Young
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.457-463
    • /
    • 2005
  • KHNP(Korea Hydro and Nuclear Power Ltd., Co.) is developing a HIC transport package which is satisfying domestic and IAEA regulations and NETEC(Nuclear Environment Technology Institute) is conducting a conceptual design. In this study, the shielding thickness was calculated using the data from radionuclide assay program which is currently using in nuclear sites and Micro Shield code. Considering the structural safety, carbon steel was chosen as shielding material and the shielding thickness was calculated for 500 R/hr and 100 R/hr at HIC surface, respectively. Through the shielding analysis, it was evaluated that the regulation limit is satisfied when the shielding thickness is 22 cm for 500 R/hr and 17 cm for 100/hr.

  • PDF

The Effects of Coating Treatments on Enteric Coating of the Soft Capsules Containing Omega-3 Fatty Acids (오메가-3 연질캡슐의 코팅 조건에 따른 장용성 코팅품질에 미치는 영향)

  • Ko, Won-Hwa;Hong, Jun-Kee;Lee, Sung-Wan;Cha, Ja-Hyun;Cha, Jae-Uk;Baek, Hyon-Ho;Park, Hyun-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.168-172
    • /
    • 2012
  • This article presents an evaluation of the effects of coating conditions on the enteric coating quality of soft gelatin capsules containing Omega-3 fatty acids. Three conditions were controlled: concentration of hydroxypropyl methylcellulose phthalate (6, 8, and 10 wt% in solution), temperature of the inlet air (32, 35, and $38^{\circ}C$), and the coating solution feed rate (7.5, 11.25, and 15.0 g/min). The transparency of the enteric coated soft gelatin capsules was evaluated by measuring the degree of whiteness of the surface using a spectrophotometer. Results showed that the most important parameter in the enteric coating process was the coating solution feed rate. As the coating solution feed rate decreased and inlet air temperature increased, the degree of whiteness of coating surfaces decreased. We also evaluated the disintegration properties of the enteric coated capsules in accordance with the Korea Health Functional Food Code.

Experimental Study on Structural Behavior of Interfaces of Double Composite Girder Using the 80 MPa Concrete (80 MPa급 콘크리트를 활용한 이중합성 거더의 수평접합면 구조거동에 관한 실험적 연구)

  • Yang, In-Wook;Lim, Eol;Ha, Tae-Yul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.400-413
    • /
    • 2016
  • The horizontal shear capacity when the flange of a steel girder is replaced with 80 MPa concrete is important for its structural safety. In this study, 6 specimens with different interface conditions were designed and fabricated based on the Limit State Design Code on Korean Highway Bridges and static tests were performed to measure the horizontal shear capacity. Not only the resistance factors of the stud shear connector, concrete and reinforcement, but also the surface conditions of the casing concrete and spacing of the horizontal shear reinforcements were used as the experimental variables. The experiments showed that the interfaces between the steel girder and the concrete flange have stronger joint performance than those between the concrete flange and deck slab. To ensure the composite action in the plastic zone, the conservative horizontal shear reinforcement is more important than the roughness in the concrete face.

Nonlinear Simulation of Flutter Flight Test with the Forced Harmonic Motion of Control Surfaces (조종면 강제 조화운동을 고려한 비선형 플러터 비행시험 모사)

  • Yoo, Jae-Han;Kim, Dong-Hyun;Kwon, Hyuk-Jun;Lee, In;Kim, Young-Ik;Lee, Hee-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.92-100
    • /
    • 2002
  • In this study, transonic/supersonic nonlinear flutter analysis system of a complete aircraft including forced harmonic motion pf control surfaces has been effectively developed using the modified transonic small disturbance (TSD) equation. To consider the nonlinear effects, the coupled time marching method (CTM) combining computational structural dynamics (CFD) has been directly applied for aeroelastic computations. The grid system for a complex full aircraft configuration is effectively generated by the developed inhouse code. Intransonic and supersonic flight regimes, the characteristics of static and dynamic aeroelastic effect has been investigated for a complete aircraft model. Also, nonlinear flutter flight simulations for the forced harmonic motion of control surfaces are practically presented in detail.

Numerical Investigation of the Lateral Jet Effect on the Aerodynamic Characteristics of the Missile: Part II. Freestream-Jet Angle Effect (측 추력 제트가 미사일의 공력특성에 미치는 영향에 관한 연구 : Part II. 자유류-제트 각 영향)

  • Min, Byung-Young;Lee, Jae-Woo;Byun, Yung-Hwan;Hyun, Jae-Soo;Kim, Sang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.27-34
    • /
    • 2004
  • A computational study on the supersonic flow around the lateral jet controlled missile has been performed. For this purpose a three dimensional Navier-Stokes computer code(AADL3D) has been developed and case studies have been performed by comparing the normal force coefficient and the moment coefficient of a missile body for several parameters such as angles of attack, circumferential jet positions, and spouting jet angles. Missile surface is divided into four regions with respect to the center of gravity, and the normal force and moment distribution at each region are compared. The results show different behavior of the normal force and moment variation according to each parameter. Furthermore, it is shown that the pitching moment can be minimized through proper combination of each parameter.

Development and Application of an Explosion Modeling Technique Using PFC (PFC3D에서의 폭원모델링 기법의 개발 및 적용)

  • Choi Byung-Hee;Yang Hyung-Sik;Ryu Chang-Ha
    • Explosives and Blasting
    • /
    • v.22 no.4
    • /
    • pp.7-15
    • /
    • 2004
  • An explosion modeling technique was developed by using the spherical discrete element code, PFC3D, which can be used to model the dynamic stress wave propagation phenomenon. The modeling technique is simply based on an idea that the explosion pressure should be applied to a PFC3D particle assembly not in the form of an external force (body force), but in the form of a contact force (surface force). According to this concept, the explosion pressure is applied to the wall particles by the scheme of radius expansion/contraction of inner-hole particles. The output wall force is compared to the input hole pressure in every time step, and a correction routine is activated to control the radius multiplier of the inner-hole particles. A comparative blast simulation far a cement mortar block of $80\times90\times80mm$ was conducted by using the conventional explosion modeling method and the new one. The results of the simulation are presented in a qualitative fashion.

Structural Safety Evaluation by Analysis of Pressure Variation Characteristics of Small Hydro Power Hydraulic Turbine Blades in Sewage Treatment Plant (하수처리장 소수력 수차 블레이드의 압력변화 특성 분석을 통한 구조안전성 평가)

  • Park, Yoo-Sin;Kim, Ki-Jung;Youn, Byong-Don
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.126-131
    • /
    • 2017
  • Numerical analysis using commercial CFD code was carried out to develop the drag force type vertical axis hydraulic turbine for the improvement of the production efficiency of small hydro energy at low flow velocity condition. Blade pressure changes and internal flows were analyzed according to the presence or absence of the hydraulic turbine blade holes at flow velocity of less than 1.0~3.0 m/s. According to the numerical results, the pressure and flow velocity is severly affected by the flow velocity in turbine blade with no holes, while the influence of flow velocity is comparatively decreased in turbine blade with holes. It is also found that the pressure and flow velocity on the blade surface with holes are evenly distributed with no singular location and it is believed that forming a hole in the blade may be helpful in terms of structural safety.