• Title/Summary/Keyword: surface code

Search Result 995, Processing Time 0.029 seconds

A Numerical Simulation of Heat Flow Field for Heat Island Effect Analysis to Air Pollutants Dispersion in Apartment Complex (아파트 단지내의 열섬효과가 대기오염물질 확산에 미치는 영향 해석을 위한 열유동장 수치모의)

  • Jang Eun-Suk
    • Journal of Environmental Science International
    • /
    • v.14 no.6
    • /
    • pp.577-582
    • /
    • 2005
  • Enormous apartment complexes in urban areas, temporary inversion state and heat island effect occur due to the strong sunshine and weak wind speeds which hinders the dispersion of air pollutants that are emitted from neighboring areas of apartment complexes. In this study, analysis were conducted by using the Fluent code based on the CFD(Computation Fluid Dynamics), including building layout, material, building height from the ground surface, the heat, analysis of flow field in the apartment complex. It was estimated that the temporal radiation inversion phenomenon during the daytime, which was caused by the weak wind speed and higher temperatures in the upper level, contributed to the stagnation of the air pollutants in the lower layer of the apartment complex.

The Inverse Design Technique of Axial Blade Using the Parallel Calculation (병렬 연산을 이용한 축류 블레이드의 역설계)

  • Cho, J. K.;Ahn, J. S.;Park, W. G.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.200-207
    • /
    • 1999
  • An efficient inverse design technique based on the MGM (Modified Garabedian-McFadden) method has been developed. The 2-D Navier-Stokes equations are solved for obtaining the surface pressure distributions and coupled with the MGM method to perform the inverse design. The solver is parallelized by using the domain decomposition method and the standard MPI library for communications between the processors. The MGM method is a residual-correction technique, in which the residuals are the difference between the desired and the computed pressure distribution. The developed code was applied to several airfoil shapes and the axial blade. It has been found that they are well converged to their target pressure distribution.

  • PDF

Analysis of Electroluminescent Device Using Fractal Theory (프랙탈 이론을 이용한 발광소자 발광특성 분석)

  • 조재철;박계춘;홍경진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.4
    • /
    • pp.332-337
    • /
    • 2002
  • The applicability of models based on fractal geometry to characterize the surface of the EL devices was investigated. Insulating layer and phosphor layer of EL devices were deposited on ITO glass using e-beam method. The images of phosphor layer by scanning electron microscope(SEM) were transformed to binary coded data. The relations between fractal geometry and electrical characteristics of EL devices were investigated. When the fractal dimension of $Cas:EuF_3$ EL device was 1.82 and its grain boundary area was 19%, the brightness of $Cas:EuF_3$ EL device was 261 cd/$\textrm{m}^2$.

NC Milling Productivity Incensement by Short Milling Tool Setting Method (NC 밀링에서 짧은 공구설치 방법으로 생산성 향상)

  • Kim, Su-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.60-68
    • /
    • 2008
  • The tool overhang length affects tool deflection and chatter that should be reduced for machined surface quality, productivity and long tool lift. The shortest tool setting algorithm that uses a safe space is proposed and applied with simulation software in NC machining. The safe space in the coordinate fixed in the tool is computed by the virtual machining system that simulates NC machining by stock model, tool model and NC code. The optimal tool assembly that has largest diameter and shortest length is possible using the safe space. This algorithm has been applied over fifty companies for safe and rigid tool setting. The collision accident between holder and stock was reduced from 3 to 0 a year and the productivity was incensed about 15% by using faster feed rate acceptable for shorten tool length.

Numerical simlation of nanosecond pulsed laser ablation in air (대기중 나노초 펄스레이저 어블레이션의 수치계산)

  • 오부국;김동식
    • Laser Solutions
    • /
    • v.6 no.3
    • /
    • pp.37-45
    • /
    • 2003
  • Pulsed laser ablation is important in a variety of engineering applications involving precise removal of materials in laser micromachining and laser treatment of bio-materials. Particularly, detailed numerical simulation of complex laser ablation phenomena in air, taking the interaction between ablation plume and air into account, is required for many practical applications. In this paper, high-power pulsed laser ablation under atmospheric pressure is studied with emphasis on the vaporization model, especially recondensation ratio over the Knudsen layer. Furthermore, parametric studies are carried out to analyze the effect of laser fluence and background pressure on surface ablation and the dynamics of ablation plume. In the numerical calculation, the temperature, pressure, density, and vaporization flux on a solid substrate are obtained by a heat-transfer computation code based on the enthalpy method. The plume dynamics is calculated considering the effect of mass diffusion into the ambient air and plasma shielding. To verify the computation results, experiments for measuring the propagation of a laser induced shock wave are conducted as well.

  • PDF

RGB-D Image Feature Point Extraction and Description Method for 3D Object Recognition (3차원 객체 인식을 위한 RGB-D 영상 특징점 추출 및 특징 기술자 생성 방법)

  • Park, Noh-Young;Jang, Young-Kyoon;Woo, Woon-Tack
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.448-450
    • /
    • 2012
  • 본 논문에서는 Kinect 방식의 RGB-D 영상센서를 사용하여, 깊이(Depth) 영상으로부터 3차원 객체의 기하정보를 표현하는 표면 정규 벡터(Surface Normal Vector)를 추출하고, 그 결과를 영상화하는 방법을 제안하며, 제안된 방법으로 생성된 영상으로부터 깊이 영상의 특징점 및 특징 기술자를 추출하여 3차원 객체 인식 성능을 향상시키는 방법을 제안한다. 또한 생성된 RGB-D 특징 기술자들을 객체 단위로 구분 가능한 코드북(CodeBook) 학습을 통한 인식방법을 제안하여 객체의 인식 성능을 높이는 방법을 제안한다. 제안하는 RGB-D 기반의 특징 추출 및 학습 방법은 텍스쳐 유무, 카메라 회전 및 이동 변화 등의 환경변화에 강건함을 실험적으로 증명하였으며, 이 방법은 Kinect 방식의 RGB-D 영상을 사용하는 3차원 객체/공간 인식 및 추적, 혹은 이를 응용하는 증강현실 시스템에 적용하여 사용될 수 있다.

Scale effect of mechanical properties of jointed rock mass: A numerical study based on particle flow code

  • Wang, Xiao;Yuan, Wei;Yan, Yatao;Zhang, Xue
    • Geomechanics and Engineering
    • /
    • v.21 no.3
    • /
    • pp.259-268
    • /
    • 2020
  • The synthetic rock mass (SRM) were used to investigate the influence of specimen size on the mechanical properties of jointed rock mass. The SRM were established based on parallel bond model (PBM) and smooth joint model (SJM) and the scaled rock specimens were sampled in two SRMs considering three sampling locations. The research results show that the smaller the initial fracture density is, the greater the uniaxial compressive strength (UCS), elastic modulus (E) is when compared with the same sampling location. The mechanical properties of rock specimens obtained by different sampling methods in different SRMs have different scale effects. The strength of rock specimens with more new cracks is not necessarily less than that of rock specimens with fewer new cracks and the failure of rock is caused by the formation of macro-fracture surface.

Characteristics of Negative Peak Wind Pressure acting on Tall Buildings with Step on Wall Surface

  • Yoshida, Akihito;Masuyama, Yuka;Katsumura, Akira
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.4
    • /
    • pp.283-290
    • /
    • 2019
  • Corner cut, corner chamfered or a building shape change are adopted in the design of tall buildings to achieve aerodynamic superiority as well as response reduction. Kikuchi et.al pointed out that large negative peak external pressures can appear near the inside corner of set-back low rise buildings. It is therefore necessary to pay attention to facade design around steps in building surfaces. Peak wind pressures for corner cut or corner chamfered configurations are given in the AIJ code. However, they cannot be applied where there are many variations of vertical and horizontal steps. There has been no previous systematic research on peak wind pressures around steps in building surfaces. In this study, detailed phenomenon of peak wind pressures around steps in buildings are investigated focusing on vertical and horizontal distances from the building's corner.

Unsteady Analysis of 3-Dimensional Hydrofoils Using a B-Spline Based High Order Panel Method

  • Jang, Hyun-Gil;Ahn, Byoung-Kwon;Lee, Chang-Sup
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.2
    • /
    • pp.16-31
    • /
    • 2008
  • The lifting-surface programs have been used successfully in practice for the design and global performance prediction of the marine propellers. To predict the pressures on the blade for the strength analysis, the constant panel method has been a good alternative. To meet the need for more accurate information on the pressure near the tip region and the trailing edge of the blade, the higher order panel method (HiPan, hereinafter) based on a B-spline is developed and now available. However, there is an increasing demand to get the highly reliable unsteady behavior of the pressure near the tip region by the HiPan. The ultimate goal of our efforts is to develop the fully unsteady higher order panel code for the propeller. In the present paper, we will show the numerical procedure applicable to unsteady problems of the three dimensional hydrofoil in a sinusoidal gust and heave motions.

CFD investigation of a JAEA 7-pin fuel assembly experiment with local blockage for SFR

  • Jeong, Jae-Ho;Song, Min-Seop
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3207-3216
    • /
    • 2021
  • Three-dimensional structures of a vortical flow field and heat transfer characteristics in a partially blocked 7-pin fuel assembly mock-up of sodium-cooled fast reactor have been investigated through a numerical analysis using a commercial computational fluid dynamics code, ANSYS CFX. The simulation with the SST turbulence model agrees well with the experimental data of outlet and cladding wall temperatures. From the analysis on the limiting streamline at the wall, multi-scale vortexes developed in axial direction were found around the blockage. The vortex core has a high cladding wall temperature, and the attachment line has a low cladding wall temperature. The small-scale vortex structures significantly enhance the convective heat transfer because it increases the turbulent mixing and the turbulence kinetic energy. The large-scale vortex structures supply thermal energy near the heated cladding wall surface. It is expected that control of the vortex structures in the fuel assembly plays a significant role in the convective heat transfer enhancement. Furthermore, the blockage plate and grid spacer increase the pressure drop to about 36% compared to the bare case.