• Title/Summary/Keyword: surface chemical analyses

Search Result 286, Processing Time 0.026 seconds

Syntheses of Cu-In-Ga-Se/S nano particles and inks for solar cell applications

  • Jung, Duk-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.295-295
    • /
    • 2010
  • Nanoparticles of the compound semiconductor, Cu(In, Ga)Se2 (CIGS), were synthesized in solution under ambient pressure below $100^{\circ}C$ and characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), optical absorption spectroscopy and energy-dispersive X-ray (EDX) analyses. These materials have chalcopyrite crystal structures and the particle sizes less than 100 nm. Synthetic conditions were studied for the crystallized CIGS nanoparticles formation to prevent from side products of Cu2Se, Cu2-xSe, and CuSe etc. The single phase CIGS nanoparticles were applied to coating of thin films photovoltaic cells. The electro deposition of CIGS thin films is also a good non-vacuum technology and under investigation. In aqueous solutions, the different chemical compositions of CIGS thin films were obtained, depending on pH, concentration of starting materials and deposition potentials. The surface morphology of the prepared CIGS thin films depends on the complexing ligands to the solutions during the electrochemical deposition.

  • PDF

Welding Heat Source Modeling for Heat Flow Analysis of GTA Overlay Welding (GTA 오버레이 용접부의 열유동 해석을 위한 용접열원 모델링)

  • Kim, Yong-Rae;Chae, Hyunbyung;Kim, Jae-Woong
    • Journal of Welding and Joining
    • /
    • v.31 no.4
    • /
    • pp.62-66
    • /
    • 2013
  • Overlay welding is carried out to improve the corrosion resistance, wear resistance and heat resistance on the surface of the chemical plant and steelmaking plant structures. In overlay welding, control of the bead size and the temperature distribution of weldment are particularly important because that is directly connected to the improvement of quality and productivity. The aim of this study is to model the welding heat source that is very useful to analyze the bead size and temperature distribution of weldment. To find the welding heat source model, numerical analyses are performed by using FE software MSC-marc.

Measurement of Welding Residual Stress in a 25-mm Thick Butt Joint using Inherent Strain Method (고유변형도법에 의한 두께 25mm 맞대기용접부의 두께방향의 잔류응력측정)

  • Park, Jeong-Ung;An, Gyu-Baek;Woo, Wanchuck;Heo, Seung-Min
    • Journal of Welding and Joining
    • /
    • v.31 no.4
    • /
    • pp.67-72
    • /
    • 2013
  • Overlay welding is carried out to improve the corrosion resistance, wear resistance and heat resistance on the surface of the chemical plant and steelmaking plant structures. In overlay welding, control of the bead size and the temperature distribution of weldment are particularly important because that is directly connected to the improvement of quality and productivity. The aim of this study is to model the welding heat source that is very useful to analyze the bead size and temperature distribution of weldment. To find the welding heat source model, numerical analyses are performed by using FE software MSC-marc.

Investigation on Causes of Pitting Corrosion in Sprinkler Copper Tubes (스프링클러 동배관의 공식부식 발생원인)

  • Lee, Jae-Bong;Jung, Hoseok
    • Corrosion Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.6-14
    • /
    • 2014
  • Copper metal is widely used in tubes installed in sprinkler water services because of its excellent corrosion resistance. Copper corrosion is considered to be insignificant in water system and the incident of copper pipeline failure is relatively low. However, pitting corrosion is a major problem with all copper tubes. In this study, leaked sprinkler copper tubes were collected from three different locations and examined on the causes of pitting corrosion of copper tubes in sprinkler water plumbing systems. Electrochemical tests such as potentiodynamic polarization, as well as surface and chemical analyses were performed. Results show that pitting corrosion of copper tubes were found as Type I pitting that the carbon film formed on the copper tubes have a harmful effects, causing the pinhole failure in the pipe and resulting in leakage of water. The contermeasures on Type I pitting corrosion of copper tubes were proposed.

Non-destructive Inspection Methods for Componential Analysis of Concrete (콘코리트 성분분석을 위한 비파괴분석방법)

  • Kanada, Hisashi;Ahn, Tae-Ho;Uomoto, Taketo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.933-936
    • /
    • 2006
  • Many non-destructive inspection methods have recently been developed for concrete structures. However, these methods can obtain only physical information of concrete, such as crack depth, delamination or position of reinforcement etc. near its surface. If chemical information is required, sampling and componential analyses may be earned out. Non-destructive method that can detect deterioration factors such as carbonation, chloride content or sulfate attack would be an outstanding innovation in inspection methodologies. In this research, near-infrared spectroscopy and X-ray fluorescence analysis were applied for componential analysis for concrete. These methods are very effective compared to traditional methods, therefore, working efficiency and maintenance cost will be improved.

  • PDF

Synthesis and Characterization of Epoxy Silane-modified Silica/Polyurethane-urea Nanocomposite Films (에폭시 변성 실리카 나노입자/폴리우레탄-우레아 나노복합체 필름의 제조 및 특성 연구)

  • Joo, Jin;Kim, Hyeon Seok;Kim, Jin Tae;Yoo, Hye Jin;Lee, Jae Ryung;Cheong, In Woo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.371-378
    • /
    • 2012
  • Hydrophilic silica nanoparticles (SNPs) were treated by using 3-glycidoxypropyltrimethoxy silane (GPTMS) and then they were blended with polyurethane-urea (PUU) emulsions to obtain SNPs/PUU nanocomposite films. Thermo-mechanical properties of the nanocomposite films were investigated by varying the grafted amount of GPTMS onto SNPs and the contents of SNPs in the PUU matrix. The thermo-mechanical properties of the nanocomposite films were also compared in terms of the dispersibility of SNPs in the PUU matrix and thermal curing of the GPTMS-grafted SNPs. The maximum amount of grafted GPTMS was $1.99{\times}10^{-6}\;mol/m^2$, and which covered ca. 53% of the total SNP surface area. $^{29}Si$ CP/MAS NMR analyses with the deconvolution of peaks revealed the details of polycondensation degree and patterns of GPTMS in the surface modification of SNPs. The surface modification did not significantly affect colloidal stability of the SNPs in aqueous medium; however, the hydrophobic modification of SNPs offered a favorable effect on the dispersibility of SNPs in the PUU matrix as well as better thermal stability. XRD patterns revealed that GPTMS-grafted SNPs broadened the reduced the characteristic peak of polyol in PUU matrix. The composite films became rigid and less flexible as the SNP content increased from 5 wt.% to 20 wt.%. Particularly, Young's modulus and tensile modulus significantly increased after the thermal curing reaction of the epoxy groups in the SNPs.

Physical and Chemical Properties of Soil in Jang-San Wetland, Busan Metropolitan City (부산시 장산습지 토양의 물리적 및 화학적 특성)

  • Cha, Eun-Jee;Hamm, Se-Yeong;Kim, Hyun-Ji;Lee, Jeong-Hwan;Ok, Soon-Il
    • Journal of Environmental Science International
    • /
    • v.19 no.11
    • /
    • pp.1363-1374
    • /
    • 2010
  • This study examined the physical and chemical properties of soil in Jang-San wetland in Busan Metropolitan City. The wetland covers wide and flat area comparing to its outside. The samples of the wetland soil were collected and analyzed in order to identify the profiles and chemical properties. According to the analyses of soil moisture and particle size distribution, the wetland soil mostly belongs to sandy loam with the soil moistures of 14.9-153.2%. The soil profiles are configured with O, A, B, and C horizons from the land surface. The organic matter content (2.38-16.7%) at most sampling locations decreases downwardly with the highest at 0-20 cm depth. The organic matter content has a good positive relationship with soil moisture content. According to X-ray diffraction analysis, the wetland soils contain quartz and feldspar (the main components of rhyolite porphyry) as well as montmorillonite, gibbsite, and kaolinite (the weathered products of feldspar). The wetland soil displays the highest iron concentration (average 22,052 mg/kg), indicating oxidation of iron. High concentrations of potassium (average 17,822 mg/kg) and sodium (average 5,394 mg/kg) originate from the weathering of feldspar. Among anions, sulfate concentration is highest with average 9.21 mg/kg that may originate from sulfate minerals and atmosphere.

Preparation and capacitance properties of graphene based composite electrodes containing various inorganic metal oxides

  • Kim, Jeonghyun;Byun, Sang Chul;Chung, Sungwook;Kim, Seok
    • Carbon letters
    • /
    • v.25
    • /
    • pp.14-24
    • /
    • 2018
  • Electrochemical properties and performance of composites performed by incorporating metal oxide or metal hydroxide on carbon materials based on graphene and carbon nanotube (CNT) were analyzed. From the surface analysis by field emission scanning electron microscopy and field emission transmission electron microscopy, it was confirmed that graphene, CNT and metal materials are well dispersed in the ternary composites. In addition, structural and elemental analyses of the composite were conducted. The electrochemical characteristics of the ternary composites were analyzed by cyclic voltammetry, galvanostatic charge-discharge tests, and electrochemical impedance spectroscopy in 6 M KOH, or $1M\;Na_2SO_4$ electrolyte solution. The highest specific capacitance was $1622F\;g^{-1}$ obtained for NiCo-containing graphene with NiCo ratio of 2 to 1 (GNiCo 2:1) and the GNS/single-walled carbon $nanotubes/Ni(OH)_2$ (20 wt%) composite had the maximum specific capacitance of $1149F\;g^{-1}$. The specific capacitance and rate-capability of the $CNT/MnO_2/reduced$ graphene oxide (RGO) composites were improved as compared to the $MnO_2/RGO$ composites without CNTs. The $MnO_2/RGO$ composite containing 20 wt% CNT with reference to RGO exhibited the best specific capacitance of $208.9F\;g^{-1}$ at a current density of $0.5A\;g^{-1}$ and 77.2% capacitance retention at a current density of $10A\;g^{-1}$.

Performance Analysis with Various Amounts of Electrolyte in a Molten Carbonate Fuel Cell

  • Kim, Yu-Jeong;Kim, Tae-Kyun;Lee, Ki-Jeong;Lee, Choong-Gon
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.234-240
    • /
    • 2016
  • The effect of initial electrolyte loading (IEL) on cell performance in a coin-type molten carbonate fuel cell (MCFC) was investigated in this work. Since the material of MCFC depends on the manufacturer, optimisation requires experimental investigation. In total, four IEL values, 1.5, 2.0, 3.0, and 4.0 g, were used, corresponding to a pore filling ratio (PFR) of 38, 51, 77, and 102%, respectively. The cell performance with respect to the PFR was analysed via steady-state polarisation, step-chronopotentiomtery, and impedance methods. The electrochemical analyses revealed that internal resistance and overpotential of the cell decreased with increasing PFR, and a large overpotential was observed when the PFR was 102%, probably due to the flooding phenomenon. After operation, cross-section of the cell was analysed via surface analysis of SEM and EDS methods, and the remaining electrolyte was estimated by dissolution of the cell in 10 wt% acetic acid. A linear relationship between IEL and the weight reduction ratio by dissolution was obtained. Thus, the remaining amount of electrolyte could be measured after operation. The results of SEM and EDS showed that a PFR of 38 and 102% showed a lack and flooding of electrolytes at the cell, respectively, which led to a large overpotential. This work reports that MCFC performance is allowed only in the narrow range of PFR.

Photovoltaic Performance of Crystalline Silicon Recovered from Solar Cell Using Various Chemical Concentrations in a Multi-Stage Process (습식 화학 공정에 의한 태양전지로부터 고순도 실리콘 회수 및 이를 이용한 태양전지 재제조)

  • Noh, Min-Ho;Lee, Jun-Kyu;Ahn, Young-Soo;Yeo, Jeong-Gu;Lee, Jin-Seok;Kang, Gi-Hwan;Cho, Churl-Hee
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.697-702
    • /
    • 2019
  • In this study, using a wet chemical process, we evaluate the effectiveness of different solution concentrations in removing layers from a solar cell, which is necessary for recovery of high-purity silicon. A 4-step wet etching process is applied to a 6-inch back surface field(BSF) solar cell. The metal electrode is removed in the first and second steps of the process, and the anti-reflection coating(ARC) is removed in the third step. In the fourth step, high purity silicon is recovered by simultaneously removing the emitter and the BSF layer from the solar cell. It is confirmed by inductively coupled plasma mass spectroscopy(ICP-MS) and secondary ion mass spectroscopy(SIMS) analyses that the effectiveness of layer removal increases with increasing chemical concentrations. The purity of silicon recovered through the process, using the optimal concentration for each process, is analyzed using inductively coupled plasma atomic emission spectroscopy(ICP-AES). In addition, the silicon wafer is recovered through optimum etching conditions for silicon recovery, and the solar cell is remanufactured using this recovered silicon wafer. The efficiency of the remanufactured solar cell is very similar to that of a commercial wafer-based solar cell, and sufficient for use in the PV industry.