• Title/Summary/Keyword: surface charge

Search Result 1,499, Processing Time 0.034 seconds

Charge/Discharge Characteristics of $SnO_2$ thin film as an anode of thin film secondary battery for microelectromechanical system device (Microelectromechnical system 소자를 위한 박막형 2차전지용 $SnO_2$ 음극박막의 충방전 특성 평가)

  • 남상철;조원일;전은정;신영화;윤영수
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.1
    • /
    • pp.36-41
    • /
    • 2000
  • $SnO-2$ thin films for thin film secondary battery anode were deposited n glass substrate with stain-less steel collector and charge/discharge experiments were conducted to investigate feasibility of $SnO-2$ thin film as a new anode material. The as-deposited films were pure $SnO-2$ phase which is not related to deposition condition. The grain size on the surface of as-deposited films increased with increase of oxygen partial pressure. However, the grain size did not show any change above oxygen partial pressure of 80:20. The surface roughness of the as-deposited films increased after decreasing because of resputtering effect of oxygen negative ion in plasma. All films showed typical $SnO-2$ anode characteristics which has a side effect at the first cycle, which is not related to the deposition condition. The charge/discharge experiments of 200cycles indicated that capacity of $SnO-2$ films depended on oxygen contents and surface roughness. The cycle characteristics was determined by initial charge/discharge reaction. The $SnO-2$ film with low initial capacity showed more stable cycle characteristics than film with high initial capacity.

  • PDF

A Study of Long Range Band Bending Effect on the Ge(001) Surface by STM

  • Kim, Min-Seong;No, Hui-Yun;Yeo, In-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.175.1-175.1
    • /
    • 2014
  • Despite growing interest in Ge as a possible alternative to Si, reliable data on Ge surface has been relatively scarce. Using low temperature scanning tunneling microscopy (STM), we investigate band-bending effects of localized charge traps at Ge(001) surface at 78 K. For this investigation, we prepared nearly defect-free Ge(001) surface by keeping the background pressure to < $1{\times}10^{-10}$ mbar during outgassing. Ge(001) surfaces this obtained exhibit a flat-band condition, and deposition of charge traps induce a distinct, sharp boundary between pinned and depinned surface area in the constant current mode STM images. We will show the tip-surface interaction plays an essential role in producing the boundary, and discuss about the conditions that enable the pinning effect.

  • PDF

Atomic Study of Oxidation of Si(001) surface by MD Simulation

  • Pamungkas, Mauludi Ariesto;Kim, Byung-Hyun;Joe, Min-Woong;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.360-360
    • /
    • 2010
  • Very initial stage of oxidation process of Si (001) surface was investigated using large scale molecular dynamics simulation. Reactive force field potential was used for the simulation owing to its ability to handle charge variation associated with the oxidation reaction. To know the detail mechanism of both adsorption and desorption of water molecule (for simulating wet oxidation), oxygen molecule (for dry oxidation) and their atom constituents, interaction of one molecule with Si surface was carefully observed. The simulation is then continued with many water and oxygen molecules to understand the kinetics of oxide growth. The results show that possibilities of desorption and adsorption depend strongly on initial atomic configuration as well as temperature. We observed a tendency that H atoms come relatively into deeper surface or otherwise quickly desorbed away from the silicon surface. On the other hand, most oxygen atoms are bonded with first layer of silicon surface. We also noticed that charge transfer is only occur in nearest neighbor regime which has been pointed out by DFT calculation. Atomic structure of the interface between the oxide and Si substrate was characterized in atomic scale.

  • PDF

Specimen Preparation for Scanning Electron Microscope Using a Converted Sample Stage

  • Kim, Hyelan;Kim, Hyo-Sik;Yu, Seungmin;Bae, Tae-Sung
    • Applied Microscopy
    • /
    • v.45 no.4
    • /
    • pp.214-217
    • /
    • 2015
  • This study introduces metal coating as an effective sample preparation method to remove charge-up caused by the shadow effect during field emission scanning electron microscope (FE-SEM) analysis of dynamic structured samples. During a FE-SEM analysis, charge-up occurs when the primary electrons (input electrons) that scan the specimens are not equal to the output electrons (secondary electrons, backscattered electrons, auger electrons, etc.) generated from the specimens. To remove charge-up, a metal layer of Pt, Au or Pd is applied on the surface of the sample. However, in some cases, charge-up still occurs due to the shadow effect. This study developed a coating method that effectively removes charge-up. By creating a converted sample stage capable of simultaneous tilt and rotation, the shadow effect was successfully removed, and image data without charge-up were obtained.

Surface Properties of Glutathione Layer Formed on Gold Surfaces (금 표면 위에 형성된 글루타싸이온 층의 표면 물성)

  • Park, Jin-Won
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.379-384
    • /
    • 2012
  • It is investigated that that the physical properties of Glutathione layer formed on gold surfaces may make an effect on the distribution of either gold particle adsorbed to the $TiO_2$ surface or vice versa with the adjustment of the electrostatic interactions. For the investigation, the atomic force microscope (AFM) was used to measure the surface forces between the surfaces as a function of the salt concentration and pH value. With the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, the forces were quantitatively analyzed to acquire the surface potential and charge density of the surfaces for each salt concentration and each pH value. The surface potential and charge density dependence on the salt concentration was described with the law of mass action, and the pH dependence was explained with the ionizable groups on the surface. The salt concentration dependence of the surface properties, found from the measurement at pH 8 and 11, was consistent with the prediction from the law. It was found that the Glutathione layer had higher values for the surface charge densities and potentials than the titanium dioxide surfaces at pH 8 and 11, which may be attributed to the ionized-functional-groups of the Glutathione layer.

Influence of Interaction of Surface Charges of PET Fiber and $\alpha$-Fe2O3 Particle on Detergency of Particulate Soil (PET섬유와 $\alpha-Fe_2O_3$ 입자의 표면전하간 상호작용이 고형오구의 세척성에 미치는 영향)

  • 강인숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.8
    • /
    • pp.1132-1140
    • /
    • 1998
  • The adhesion and removal of $\alpha$-Fe2O3 particles on the from PET fabric in NPE solution with different ionic strength were discussed in terms of interaction of surface charge of particle and substrate. The adhesion of $\alpha$-Fe2O3 particles to PET fabric and its removal from PET fabric were carried out by using water bath shaker and Terg-O-Tometer under various solution conditions. The ζ potential of PET fiber and $\alpha$-Fe2O3 particles in the detergent solution were measured by steaming potential and microelectrophoresis methods, respectively. The adhesion and removal amount of $\alpha$-Fe2O3 particles on the from PET fabric increased with increasing time of adhesion and removal, and the rates of adhesion and removal were high at the initial stage of adhesion and removal, and then the rates decreased with passing time. The adhesion and removal amount of $\alpha$-Fe2O3 particles on and from PET fabric increased with increasing pH of solution regardless ionic strength. The tendencies and degree of adhesion and removal were very similar regardless interaction of surface charge of particle and fiber. Therefore, in the presence of a surfactant and electrolyte, the influence of interaction of surface charge of particle and substrate on the detergency of particulate soil was small.

  • PDF

Charge-Discharge Characteristics of Physically Coated Lithium Anodes by Carbon Powders (탄소분말이 물리적으로 코팅된 리튬 음전극의 충방전 특성)

  • Kim, Kwang Man;Lee, Sang Hyo;Lee, Young-Gi
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.554-559
    • /
    • 2011
  • To improve the safety and electrode characteristics of lithium metal anode, physically coated electrodes on lithium metal surface by three kinds of carbon are prepared and their charge-discharge performances are investigated by adopting the C-Li electrodes as the anode of rechargeable lithium batteries. The lithium anode coated by the carbon powder with smaller particle size and higher surface area, which has higher packing density and lower surface roughness, shows better performance in charge-discharge characteristics. The carbon coating on lithium surface can be more effective in small-sized cells.

Interfacial and Flow Properties of Latices for Paper Coating (종이 도공용 라텍스의 계면(界面) 및 유동특성(流動特性)에 관한 연구(硏究))

  • Lee, Yong-Kyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.85-90
    • /
    • 1994
  • The flow properties of binder latices for paper coating were investigated, together with dynamic viscoelastic properties of latex films and electron micrographs of latices, under various conditions. The amphoteric latex, binder pigment latex and anionic latex were used in this work. The amphoteric latex has both anionic and cationic functional group on its surface. The binder-pigment with a core-shell structure has dual functions : plastic pigment and binder. The low shear viscosity of binder latices and clay slurry were measured with Brookfield vis cometer. At low-shear rates. the viscosity decreased with increasing particle size of latex. On the amphoteric latex surface, the carboxyl groups are assumed to be fully dissociated over the region of pH 9~12, but the density of negative groups seems to be increased because of the gradual decrease in the degree of dissociation of amino groups. Since the apparent particle size of latex increases with surface charge, the electroviscous effect can be observed. On the anionic latex surface, the charge density is assumed to be nearly constant above pH 8. However, below pH 8 the coagulation of particles could be observed probably because of the decrease in the charge density.

  • PDF

Improvement of Electrochemical Properties and Thermal Stability of a Ni-rich Cathode Material by Polypropylene Coating

  • Yoo, Gi-Won;Son, Jong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.179-184
    • /
    • 2016
  • The interface between the surface of a cathode material and the electrolyte gives rise to surface reactions such as solid electrolyte interface (SEI) and chemical side reactions. These reactions lead to increased surface resistance and charge transfer resistance. It is consequently necessary to improve the electrochemical characteristics by suppressing these reactions. In order to suppress unnecessary surface reactions, we coated cathode material using polypropylene (PP). The PP coating layer effectively reduced the SEI film that is generated after a 4.3 V initial charging process. By mitigating the formation of the SEI film, the PP-coated Li[(Ni0.6Co0.1Mn0.3)0.36(Ni0.80Co0.15Al0.05)0.64)]O2(NCS) electrode provided enhanced transport of Li+ ions due to reduced SEI resistance (RSEI) and charge transfer resistance (Rct). The initial charge and discharge efficiency of the PP-coated NCS electrode was 96.2 % at a current density of 17 mA/g in a voltage range of 3.0 ~ 4.3 V, whereas the efficiency of the NCS electrode was only 94.7 %. The presence of the protective PP layer on the cathode improved the thermal stability by reducing the generated heat, and this was confirmed via DSC analysis by an increased exothermic peak.

Behavior of Water Droplet on the Polymer Surface and Influence of the Charge

  • Zhu, Yong;Yamashita, Seiji;Anami, Naoya;Otsubo, Masahisa;Honda, Chikahisa;Takenouchi, Osamu;Hashimoto, Yousuke
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.3
    • /
    • pp.81-85
    • /
    • 2003
  • This paper describes the results of experiments made to examine the behavior of water droplet on the polymer surface and influence of the charge. In this experiment, water droplet was put on the polymer surface in an applied AC electric field and the investigations of its behavior were done with a high-speed video camera. It can be observed that the droplet elongates and vibrates with being pulled towards the positive electrode in a wave synchronism with the frequency of the power source. The volume and conductivity of water droplet are shown to have a marked effect on the mode of discharge development. These behaviors may be caused by the change of electric field of applied AC voltage and induced charges in/on the water droplet.