• Title/Summary/Keyword: surface charge

Search Result 1,498, Processing Time 0.029 seconds

Probe-based Charge Injection Study of DNA Charge Transfer for Applications to Molecular Electro-optic Switching (전극 기반의 전하 주입을 통한 DNA 전하수송 특성 측정)

  • Ryu, Ho-Jeong;Kim, Hee-Young;Kim, Dong-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.3
    • /
    • pp.53-59
    • /
    • 2011
  • Charge transfer through DNA oligonucleotides has been investigated for potential applications of DNA into molecular electrooptic switching devices. Electrons were injected using gold electrode probes where DNA oligomers were adsorbed that are separated in medium. The results show that increased adsorption of DNA reduces the ionization current due to the combined effect of charge transfer through DNA and surface-limited charge transport. The probe-based charge injection was extended to examine the capability of extinguishing fluorescence of Cy3 dye molecules attached to DNA. It is expected that the results may be employed to implementing a novel electrooptic switching device based on DNA molecules.

The Surface Modification of Electrode with Solid Electrolyte Interphase for Hybrid Supercapacitor

  • Choi, Min-Geun;Kang, Soo-Bin;Yoon, Jung Rag;Lee, Byung Gwan;Jeong, Dae-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1102-1106
    • /
    • 2015
  • A hybrid supercapacitor (HS) is an energy storage device used to enhance the low weight energy density (Wh/kg) of a supercapacitor. On the other hand, a sudden decrease in capacity has been pointed out as a reliability problem after many charge/discharge cycles. The reliability problem of a HS affects the early aging process. In this study, the capacity performance of a HS was observed after charge/discharge. For detailed analysis of the initial charge/discharge cycles, the charge and discharge curve was measured at a low current density. In addition, a solid electrolyte interphase (SEI) layer was confirmed after the charge/discharge. A HC composed of a lithium titanate (LTO) anode and active carbon cathode was used. The charge/discharge efficiency of the first cycle was lower than the late cycles and the charge/discharge rate was also lower. This behavior was induced by SEI layer formation, which consumed Li ions in the LTO lattice. The formation of a SEI layer after the charge/discharge cycles was confirmed using a range of analysis techniques.

Effect of Space Charge on the PD Pattern in XLPE (XLPE에서 공간전하가 PD 패턴에 미치는 영향)

  • HwangBo, S.;Shim, J.W.;Lee, J.J.;Lee, D.Y.;Park, D.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.96-100
    • /
    • 2001
  • We have measured the space charge distribution and PD patterns simultaneously in XLPE under AC voltages by modified PEA method in order to investigate the effect of space charge on PD patterns in XLPE with air-gap. From the experimental results, we found that the dynamic space charge accumulated on the surface of XLPE due to the PD dominantly affects the PD pattern in the dielectric-barrier structure and governs the voltage across the air-gap. Moreover, the space charge formed by applying DC voltage still remained after applying AC voltage, which means that the space charge formed during DC strength test is likely to be fatal to the long-time AC insulating characteristics of HV equipments. On the other hand, the PD patterns was much influenced by the pre-formed space charge by DC application. Therefore, it is possible to detect the effects of space charge by monitoring the infinitesimal change of PD patterns before and after DC strength.

  • PDF

A study of rear surface passivation by $Al_2O_3$ thin film for ultra thin silicon solar cells (초박형 태양전지를 위한 후면 패시베이션 막의 특성 연구)

  • Park, Sung-Eun;Kim, Young-Do;Tark, Sung-Ju;Kang, Min-Gu;Kwon, Soon-Woo;Yoon, Se-Wang;Kim, Dong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.94-94
    • /
    • 2009
  • 최근 실리콘 태양전지는 점점 얇아 지는 추세에 있다. 실리콘 태양전지에 있어 실리콘의 두께를 감소시키는 것은 실리콘 소모량을 줄이는데 있어 필수적인 조건이 되었다. 이에 따라 실리콘 표면의 passivation도 더욱 중요하게 여겨지고 있다. 실리콘 태양전지의 passivation막의 한 종류인 $Al_2O_3$는 다른 산화막 물질들과는 달리 negative fixed charge를 가지고 있고 charge의 양이 다른 산화막의 density보다 높아 p-type 실리콘의 경우 후면 passivation막으로 이용이 고려되고 있다. 본 연구에서는 atomic layer deposition으로 $Al_2O_3$막을 실리콘 위에 증착하여 열처리에 따른 그 특성을 비교하고 태양전지를 제작하였다. $Al_2O_3$막을 rapid thermal annealing을 통해 서로 다른 분위기에서 열처리 한 결과를 capacitance-voltage를 통해 측정하여 비교, 분석하였고 ellipsomety 분석을 통해 광학적 특성을 비교하였다. 또한 열처리 온도의 변화에 따른 $Al_2O_3$내에 charge에 변화가 있다는 것을 관찰하였다. 이러한 charge의 변화가 태양전지의 passivation에 영향을 주는지 관찰하기 위해 Quasi-steady state photoconductace를 통해 lifetime의 변화를 관찰 하였다. 이러한 실험결과로부터 열처리 분위기와 온도를 최적화 하여 태양전지 passivation 특성을 증가시킬 수 있었다.

  • PDF

Emission Characteristics of Blue Fluorescence Tandem OLED with Materials of CGL (CGL의 재료에 따른 청색 형광 Tandem OLED의 발광 특성)

  • Kwak, Tea-Ho;Ju, Sung-Hoo
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.4
    • /
    • pp.210-214
    • /
    • 2014
  • We investigated emission characteristics of tandem organic light emitting devices (OLEDs) with p-type materials as charge generation layer. The tandem OLEDs were fabricated by using $MoO_x$, $WO_x$, C60 and HATCN as p-type material or not using p-type material for charge generation. When HATCN was used as p-type material, it showed high current density at low applied voltage, but increase of efficiency was small because of charge unbalance in emitting layer. In case of tandem OLED not using p-type material, applied voltage increased remarkably because of difficulty of hole injection. In case of $MoO_x$, $WO_x$ or C60 as p-type material, current emission efficiency increased greatly. In particular, current emission efficiency of tandem OLED using $MoO_x$ as p-type material increased up to 3 times than current emission efficiency of single OLED. The Commission Internationale de l'Eclairage (CIE) 1931 color coordinates were changed by overlapping of 504 nm emission wavelength. As a result, emission efficiency of tandem OLED improved compared with single OLED, but driving voltage also increased by increase of organic layer thickness.

A Study on the Initial Irreversible Capacity of Lithium Intercalation Using Gradually Increasing State of Charge

  • Doh, Chil-Hoon;Jin, Bong-Soo;Park, Chul-Wan;Moon, Seong-In;Yun, Mun-Soo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.5
    • /
    • pp.189-193
    • /
    • 2003
  • Initial irreversible capacity (IIC) can be defined by means of the initial intercalation Ah efficiency (IIE) and the initial irreversible specific capacity at the surface (IICs) with the linear-fit range of the intercalation so as to precisely express the irreversibility of an electrode-electrolyte system. Their relationship was IIC = Qc - Q$_{D}$ = (IIE$^{-1}$ - 1) Q$_{D}$ + IICs in the linear-fit range of IIE. Here, Qc and Qd signify charge and discharge capacity, respectively, based on a complete lithium ion battery cell. Charge indicates lithium insertion to carbon anode. Two terms of IIE and IICs depended on the types of active materials and compositions of the electrode and electrolyte but did not change with charging state. In an ideal electrode-electrolyte system, IIE and IICs would be 100%, 0 mAh/g for the electrode and mAh for the cell, respectively. These properties can be easily obtained by the Gradual Increasing of State of Charge (GISOC).OC).

Electric Field-induced Charge Transfer of (Bu4N)2[Ru(dcbpyH)2-(NCS)2] on Gold, Silver, and Copper Electrode Surfaces Investigated by Means of Surface-enhanced Raman Scattering

  • Joo, Sang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1405-1409
    • /
    • 2007
  • The potential-induced charge transfer of the dye (Bu4N)2[Ru(dcbpyH)2-(NCS)2] (N719) on Au, Ag, and Cu electrode surfaces has been examined by surface-enhanced Raman scattering (SERS) in the applied voltage range between 0.0 and ?0.8 V. N719 is assumed to have a relatively perpendicular geometry with its bipyridine ring on the metal surfaces. A strong appearance of the carboxylate band at ~1370 cm-1 indicates that the carboxyl group will likely be deprotonated on the metal surfaces. As the electric potential is shifted from ?0.8 to 0.0 V, the ν (NCS) band at ~2100 cm-1 on the electrode surfaces appears to undergo a shift in frequency and intensity change. This indicated that the charge transfer between the dye and metal electrode surfaces had occurred. Electric-field-dependent charge transfer differs somewhat depending on the type of metal surfaces as suggested from the dissimilar frequency positions of the ν (NCS) band.

Development and Performance Evaluation of Positively Charged Porous Filter media for Water Purification System (정수 설비를 위한 양전하가 부가된 다공성 수처리 필터 개발과 성능평가)

  • Lee, Chang-Gun;Joo, Ho-Young;Lee, Jae-Keun;Ahn, Young-Chull;Park, Seong-En
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.95-98
    • /
    • 2006
  • Filtration by fibrous filter is one of the Principle methods used for removing pollutant particles in the liquid. Because of the increasing need to protect both human health and valuable devices from exposure to fine particles, filtration has become more important. Filters have been developed with modified surface charge characteristics to capture and adsorb particles by electrokinetic interaction between the filter surface and particles contained in water. The main purposes of this study are to develop and evaluate the performance evaluation of the apparatus for making a positively charged porous filter media and to analyze the surface characteristics of the filter media for capturing negavitely charged contaminants mainly bacteria and virus from water. The experimental apparatus consists of a mixing tank, a vacuum pumping system, a injection nozzle, a roller press and a controller. The filter media is composed of glass fiber(50-750 nm), cellulose($10-20{\mu}m$) and colloidal charge modifier. The characteristics of filter media is analyzed by SEM(Scanning Electron Microscopy), AFM(Atomic Force Microscopy) and quantified by measuring the zeta potential values.

  • PDF

Determination of Memory Trap Distribution in Charge Trap Type SONOSFET NVSM Cells Using Single Junction Charge Pumping Method (Single Junction Charge Pumping 방법을 이용한 전하 트랩 형 SONOSFET NVSM 셀의 기억 트랩 분포 결정)

  • 양전우;흥순혁;박희정;김선주;서광열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.453-456
    • /
    • 1999
  • The Si-SiO$_2$interface trap and nitride bulk trap distribution of SONOSFET(polysilicon-oxide-nitride-oxide-semiconductor)NVSM(nonvolatile semiconductor memory) cell were investigated by single charge pumping method. The used device was fabricated by 0.35 7m standard logic fabrication including the ONO cell process. This ONO dielectric thickness is tunnel oxide 24 $\AA$, nitride 74 $\AA$, blocking oxide 25 $\AA$, respectively. Keeping the pulse base level in accumulation and pulsing the surface into inversion with increasing amplitudes, the charge pumping current flow from the single junction. Using the obtained I$_{cp}$-V$_{h}$ curve, the local V$_{t}$ distribution, doping concentration, lateral interface trap distribution and lateral memory trap distribution were extracted. The maximum N$_{it}$($\chi$) of 1.62$\times$10$^{19}$ /cm$^2$were determined.mined.d.

  • PDF

The impact behaviors of electrified micro-droplet with existence and nonexistence of electrical charged for surface (표면 전하 유무에 따른 대전된 미소액적의 충돌 현상)

  • Lee, Jaehyun;Kim, Jihoon;Byun, Doyoung
    • Journal of the Korean Society of Visualization
    • /
    • v.13 no.1
    • /
    • pp.49-53
    • /
    • 2015
  • Recently, researches for droplet impact phenomena have been faced a new phase in the direction of studying the effect of complex external conditions (e.g. wettability, temperature, morphology, electric field, etc.) for depth understanding and precise controlling in various applications. Hence, here we investigated the electrified droplet impact phenomena, because there were few quantitative researches for electrified droplet impact when we considering many real applications such as electrospray, electrohydrodynamic (EHD) jet printing. To observe interaction effect of surface charge between substrate and droplet simultaneously, micro-droplets with various Reynolds number (Re) and Weber number (We) were dripped on super-hydrophobic surface with existence and nonexistence of electrical surface charge. It shows three kinds of impact behaviors, fully bouncing, partial bouncing, and splashing with different We. Also, charged droplet bounced higher on electrically charged surface than on non-charged surface. Additionally, transition regions of three impact behaviors were classified quantitatively with water hammer pressure value, which means instant pressure inside droplet at the impact moment.