• 제목/요약/키워드: surface barrier

검색결과 939건 처리시간 0.033초

Characteristics of Al2O3, Cr2O3, WC-Ni, and Chromizing Surface Coatingsunder Environment with HighTemperature, Wear, and Corrosion (고온, 마모 및 부식환경에 적용가능한 Al2O3, Cr2O3, WC-Ni 및 크로마이징 코팅층의 기계적 특성 평가)

  • Cho, Hee Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • 제22권6호
    • /
    • pp.895-900
    • /
    • 2013
  • Several plasma spray and metallurgical surface coatings such as $Al_2O_3$, $Cr_2O_3$, WC-Ni, and chromizing coating have been examined for their application in environments with high temperature, wear, and corrosion. The chromizing coating is different from others coatings in the manufacturing process the surface. These coatings' characteristics were tested experimentally, and the results were compared. WC-Ni shows good performance against thermal barrier, wear, and corrosion and is one of the best candidates for the environment considered herein. These coatings were studied for their application in the steel manufacturing industry. The most commonly required functions in this industry are thermal and wear resistance.

Numerical analysis of magnetization of HgBa$_2Ca_2Cu_3O_{8+{\delta}}$ superconductor (HgBa_2Ca_2Cu_3O_{8+{\delta}}$ 초전도체 자화의 수치적 해석)

  • Kim, Bong-Jun;Kim, Young-Cheol;Kim, Young-Jin;Back, Sang-Min
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 1999년도 High Temperature Superconductivity Vol.IX
    • /
    • pp.218-221
    • /
    • 1999
  • Magnetization measurements have been carried out on grain aligned Hg-1223 with the applied field parallel to the c-axis. The temperature dependence of the lower critical field H$_{cl}$(T) was determined by considering the effect of the surface barrier on the magnetization. H$_{cl}$(T) have been determined .from magnetic hysteresis loops within the framework of the modified Kim-Anderson critical-state model, where the surface barrier and the lower critical field are explicitly considered. At high temperature, H$_{cl}$(T) is identified as H$_p$(T). This results are agreed with the theory of Bean-Livinston surface barriers.

  • PDF

A Study on the Improvement of Decomposition Efficiency of Organic Substances Using Plasma Process and Catalytic Surface Chemical Reaction (플라즈마 프로세스 및 촉매 표면화학반응에 의한 유기화합물 분해효율 향상에 대한 연구)

  • Han, Sang-Bo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제59권5호
    • /
    • pp.932-938
    • /
    • 2010
  • This paper proposed the effective treatment method for organic substances using the barrier discharge plasma process and catalytic chemical reaction followed from ozone decomposition. The decomposition by the plasma process of organic substances such as trichloroethylene, methyl alcohol, acetone, and dichloromethane carried out, and ozone is generated effectively at the same time. By passing through catalysts, ozone easily decomposed and further decomposed organic substances. And, 2-dimensional distribution of ozone using the optical measurement method is performed to identify the catalytic surface chemical reaction. In addition, CO is easily oxidized into $CO_2$ by this chemical reaction, which might be induced oxygen atom radicals formed at the surface of catalyst from ozone decomposition.

A Study on the Leakage Current Voltage of Hybrid Type Thin Films Using a Dilute OTS Solution

  • Kim Hong-Bae;Oh Teresa
    • Journal of the Semiconductor & Display Technology
    • /
    • 제5권1호
    • /
    • pp.21-25
    • /
    • 2006
  • To improve the performance of organic thin film transistor, we investigated the properties of gate insulator's surface according to the leakage current by I-V measurement. The surface was treated by the dilute n-octadecyltrichlorosilane solution. The alkyl group of n-octadecyltrichlorosilane induced the electron tunneling and the electron tunneling current caused the breakdown at high electric field, consequently shifting the breakdown voltage. The 0.5% sample with an electron-rich group was found to have a large leakage current and a low barrier height because of the effect of an energy barrier lowered by, thermionic current, which is called the Schottky contact. The surface properties of the insulator were analyzed by I-V measurement using the effect of Poole-Frankel emission.

  • PDF

Hydrophobic Modification of Fiber Surface by Plasma Polymerizafon of Perfluoropropene (Perfluoropropene의 플리즈마중합에 의한 섬유의 소수성 표면개질)

  • Seo, Eun-Deock;Kang, Young-Reep;Lim, Hak-Sang
    • Textile Coloration and Finishing
    • /
    • 제3권4호
    • /
    • pp.22-28
    • /
    • 1991
  • Perfluoropropene was plasma polymerized in the form of thin film on PET fabrics to give hydrophobic and barrier properties without affecting air permeability. Changes in surface characteristics were detected by application of ESCA, IR, SEM and contact anglemeter. The surface properties was changed markedly to be water and stain repellent although the effect was not much sensitive to the differences of chemical components of the thin films formed at different experimental conditions. The protective barrier characteristics of the thin film was also applicable to suppress the amounts of dyes extracted from fabrics in laundering.

  • PDF

Formation and Chemical Dissolution Behaviors of Nano Porous Alumina (나노 기공성 알루미나의 생성과 화학적 용해 거동)

  • Oh, Han-Jun;Jeong, Yong-Soo;Chi, Choong-Soo
    • Journal of the Korean institute of surface engineering
    • /
    • 제43권5호
    • /
    • pp.217-223
    • /
    • 2010
  • For an application as templates of high performance with proper pore size and shape, porous anodic alumina films were prepared by anodization in oxalic acid, and formation behaviors of anodic alumina layer as well as dissolution process in acid solution have been investigated. The surface characteristics on anodic alumina layer were shown to be dependent on the fabrication parameters for anodization. For the dissolution behaviors of anodic alumina, the thickness of the barrier-type alumina layer decreased linearly with the rate of 0.98 nm/min in $H_3PO_4$ solution at $30^{\circ}C$. The changes of the anodic alumina layers were analyzed by SEM and TEM.

The Effect of Surface Plasmon on Internal Photoemission Measured on Ag/$TiO_2$ Nanodiodes

  • Lee, Hyosun;Lee, Young Keun;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.662-662
    • /
    • 2013
  • Over the last several decades, innovative light-harvesting devices have evolved to achieve high efficiency in solar energy transfer. Research on the mechanisms for plasmon resonance is very desirable to overcome the conventional efficiency limits of photovoltaics. The influence of localized surface plasmon resonance on hot electron flow at a metal-semiconductor interface was observed with a Schottky diode composed of a thin silver layer on $TiO_2$. The photocurrent is generated by absorption of photons when electrons have enough energy to travel over the Schottky barrier and into the titanium oxide conduction band. The correlation between the hot electrons and the surface plasmon is confirmed by matching the range of peaks between the incident photons to current conversion efficiency (IPCE, flux of collected electrons per flux of incident photons) and UV-Vis spectra. The photocurrent measured on Ag/$TiO_2$ exhibited surface plasmon peaks; whereas, in contrast to the Au/$TiO_2$, a continuous Au thin film doesn't exhibit surface plasmon peaks. We modified the thickness and morphology of a continuous Ag layer by electron beam evaporation deposition and heating under gas conditions and found that the morphological change and thickness of the Ag film are key factors in controlling the peak position of light absorption.

  • PDF

Interaction of acetone molecule on Si(001) surface: A theoretical study (Si(001) 표면과 acetone 분자의 상호작용에 대한 이론적 연구)

  • Baek, Seung-Bin;Kim, Dae-Hee;Kim, Yeong-Cheol
    • Journal of the Semiconductor & Display Technology
    • /
    • 제7권3호
    • /
    • pp.35-39
    • /
    • 2008
  • We study the interaction of acetone molecule $[(CH_3)_2CO]$ on Si(001) surface using density functional theory. An acetone molecule is adsorbed on a Si atom of the Si dimer of the Si(001) surface. The adsorption of the acetone molecule on the Si atom at lower height between the two Si atoms of the dimer is more favorable than that on the Si atoms at upper height. Then we calculate an energy variation of dissociation and four-membered ring structures of the acetone molecule adsorbed on the Si surface. Total energy difference between the two structures is about 0.05 eV, indicating that the two structures are almost equally stable. Energy barrier exists when a hydrogen atom is dissociated and adsorbed on the other Si atom of the dimer, while energy barrier does not exist when the adsorbed acetone molecule changes to four-membered ring structure, except for the rotation of the acetone molecule along z-direction. Therefore, four-membered ring structure is kinetically more favorable than the dissociation structure when the acetone molecule is adsorbed on the Si(001) surface.

  • PDF

Growth Mechanism of Graphene structure on 3C-SiC(111) Surface: A Molecular Dynamics Simulation

  • Hwang, Yu-Bin;Lee, Eung-Gwan;Choe, Hui-Chae;Jeong, Yong-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.433-433
    • /
    • 2011
  • Since the concept of graphene was established, it has been intensively investigated by researchers. The unique characteristics of graphene have been reported, the graphene attracted a lot of attention for material overcomes the limitations of existing semiconductor materials. Because of these trends, economical fabrication technique is becoming more and more important topic. Especially, the epitaxial growth method by sublimating the silicon atoms on Silicon carbide (SiC) substrate have been reported on the mass production of high quality graphene sheets. Although SiC exists in a variety of polytypes, the 3C-SiC polytypes is the only polytype that grows directly on Si substrate. To practical use of graphene for electronic devices, the technique, forming the graphene on 3C-SiC(111)/Si structure, is much helpful technique. In this paper, we report on the growth of graphene on 3C-SiC(111) surface. To investigate the morphology of formed graphene on the 3C-SiC(111) surface, the radial distribution function (RDF) was calculated using molecular dynamics (MD) simulation. Through the comparison between the kinetic energies and the diffusion energy barrier of surface carbon atoms, we successfully determined that the graphitization strongly depends on temperature. This graphitization occurs above the annealing temperature of 1500K, and is also closely related to the behavior of carbon atoms on SiC surface. By analyzing the results, we found that the diffusion energy barrier is the key parameter of graphene growth on SiC surface.

  • PDF

Deposition of Super Hydrophobic a-C:F Films by Dielectric Barrier Discharge at Atmospheric Pressure

  • Kim, Duk-Jae;Kim, Yoon-Kee;Han, Jeon-Geon
    • Journal of the Korean institute of surface engineering
    • /
    • 제44권2호
    • /
    • pp.50-54
    • /
    • 2011
  • Hydrophobic a-C:F film was coated on polycarbonate film with $CF_4$, $C_2F_6$ and HFC ($C_2F_4H_2$) gas in helium discharge generated by 5~100 kHz AC power supply at atmospheric pressure and room temperature. The highest water contact angle of the a-C:F film formed with $He/C_2F_6$ mixed gas is $155^{\circ}$. X-ray photoelectron spectrum showed that there was 40% of C-$CF_3$ bond at the surface of the super hydrophobic film. The contact angle and deposition rate were decreased with increasing substrate temperature. The contact angle was generally increased with the surface roughness of the film. The contact angle was high when the surface microstructure of the film was fine and sharp at the similar roughness and chemical composition of the surface.