• Title/Summary/Keyword: surface acting

검색결과 561건 처리시간 0.023초

MOTION RESISTANCE ANALYSIS OF A CIRCULAR STEEL WHEEL IN STICKY SOIL

  • Kishimoto, T.;Ohtomo, K.;Nishizaki, K.;Choe, J.S.;Jun, H.G.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.II
    • /
    • pp.109-116
    • /
    • 2000
  • The objective of this study is to measure rim surface adhesion and to calculate motion resistance produced by the adhesion acting on the rim section of a circular wheel under sticky soil condition. The mechanisms of generating motion resistance by the adhesion on a circular wheel were analyzed through wheel motion. Experiments were conducted in an indoor soil bin that contains loam soil. A circular steel wheel was used for experiments. A part of the wheel rim was cut off, and transducers which can measure normal and tangential forces were installed in this section. Calculated motion resistance at a part of the rim section was superposed for one wheel rotation as motion resistance produced by the rim surface adhesion. The motion resistance increased with increasing the dynamic load. Ratio of the motion resistance to total motion resistance measured by an axis transducer was about 23 to 46 % in this study.

  • PDF

가압소결법으로 제조된 알루미나 단섬유 보강 청동기지 복합재의 마모특성 (Wear Properties of the Alumina Short Fiber Reinforced Tin-Bronze Matrix Composites manufactured by Hot Pressing)

  • 최준호;허무영
    • 소성∙가공
    • /
    • 제4권4호
    • /
    • pp.398-409
    • /
    • 1995
  • The wear properties of the alumina short fiber reinforced tin-bronze matrix composites manufactured by hot pressing was studied at the room temperature and $350^{\circ}C.$ The wear loss of various specimens having different constituent and different density was examined by a pin-on-disc type wear testing machine. The results were discussed by the observation of the worn surface morphology and the analysis of the composition on the worn surfaces. Since the reinforced effect of the alumina fiber on the wear resistance was dependent on the strength of alloy matrix, the pressureless sintered composites having a lower matrix strength showed a marked increase in wear resistance by the fiber reinforcement. As the wear condition became severe, the fiber reinforcement was more effective. The delamination on the wear surface was observed in the pressureless sintered specimens having pores which are related to the initiation and the propagation of cracks. However, the wear mechanism acting on a big failure area was not found on the wear surfaces of the hot pressed specimens having a few pores.

  • PDF

내연기관 피스톤 링들 사이 가스압력 변동 (Variation of Inter-Ring Gas Pressure in Internal Combustion Engine)

  • 윤정의
    • 한국자동차공학회논문집
    • /
    • 제3권6호
    • /
    • pp.238-249
    • /
    • 1995
  • The gas pressure acting on the rings in internal combustion engine influences the friction and wear characteristics. Inter-ring pressure variation during engine operation results from cylinder gas flow through a piston-ring pack. The flow passages consist of ring end gaps and clearances between the ring and the piston groove. The gas flow in the clearance between the ring and the groove is directly affected by the axial motion of the ring in the groove. In this paper the asperity contact force is newly considered in the prediction of the clearence between the ring and the groove surface. This term must be taken into account physically in case that the clearance get narrow rather than asperity height between the ring and the groove surface. Finally, comparisons of calculated inter-ring gas pressures based on the analytical method are made with the measured ones. The agereement was found to be good below midium engine speed, 3000rpm. In order to obtain accurate analytical results to the extend of high rpm range, it is recommended to include oil ring motion as well as top and second ring in analytical model.

  • PDF

A Study on Behavioral Characteristics of Track Roadbed according to Steel Pipe Press-in Excavation during Construction of Underground Railway Crossing

  • Kim, Young-Ha;Eum, Ki-Young;Kim, Jae-Wang
    • International Journal of Railway
    • /
    • 제6권2호
    • /
    • pp.69-77
    • /
    • 2013
  • In this study, numerical analysis and model experiments were conducted to analyze behavioral characteristics acting on the track roadbed with excavation through steel pipe injection, a non-exclusive method of crossing construction under railroad as primary target. In model experiments that simulate injection excavation behaviors with an increase in the depth of soil cover, the upper displacement was measured by construction of the first and the second pipes in order to predict actual behaviors, and the behavior characteristics were verified through numerical analysis. The investigation results showed that surface displacement was smaller under the condition of higher soil cover. In the case of injecting two pipes, when the first pipe was injected, deformation of the surface increased linearly in both settlement and uplift experiments. However, when the second pipe was injected, the amount of change was found to be very small due to the relaxation and plastic zones around the first pipe. In addition, the results of numerical analysis on the same cross section with the model experiment found that the results of investigation into settlement ratio and volume loss were in very good agreement with those obtained by the model experiment.

Plantar Soft-tissue Stress states in standing: a Three-Dimensional Finite Element Foot Modeling Study

  • Chen, Wen-Ming;Lee, Peter Vee-Sin;Lee, Tae-Yong
    • 한국운동역학회지
    • /
    • 제19권2호
    • /
    • pp.197-204
    • /
    • 2009
  • It bas been hypothesized that foot ulceration might be internally initiated. Current instruments which merely allow superficial estimate of plantar loading acting on the foot, severely limit the scope of many biomechanical/clinical studies on this issue. Recent studies have suggested that peak plantar pressure may be only 65% specific for the development of ulceration. These limitations are at least partially due to surface pressures not being representative of the complex mechanical stress developed inside the subcutaneous plantar soft-tissue, which are potentially more relevant for tissue breakdown. This study established a three-dimensional and nonlinear finite element model of a human foot complex with comprehensive skeletal and soft-tissue components capable of predicting both the external and internal stresses and deformations of the foot. The model was validated by experimental data of subject-specific plantar foot pressure measures. The stress analysis indicated the internal stresses doses were site-dependent and the observation found a change between 1.5 to 4.5 times the external stresses on the foot plantar surface. The results yielded insights into the internal loading conditions of the plantar soft-tissue, which is important in enhancing our knowledge on the causes of foot ulceration and related stress-induced tissue breakdown in diabetic foot.

플라즈마 용사법을 이용한 원통형 고체산화물 연료전지의 요소피막 제조 (Fabrication of the Functional Coatings of a Tubular Solid Oxide Fuel by Plasma Spray Processes.)

  • 주원태;홍상희
    • 한국표면공학회지
    • /
    • 제30권5호
    • /
    • pp.333-346
    • /
    • 1997
  • Plasma spray processes for functional coatings of tubular SOFC ( Soild oxide Fuel Cell).consisting of air electrode, oxide electrolyte, an fuel electrode, are optimized by fully saturated fractional factorial testing. Material and electric characteristics of each coating are analtsed by the implementation of SEM and optical microscope for evaluating microstructure and porosity, X-ray diffraction method for investigating compositional change between raw powder and sprayed coating, and Van der Pauw method for measuring electrical conductivity. LSM ($La_{0.65}Sr_{0.35}MnO_3$air electrode and Ni-YSL fuel electrode coatings have porosities of around 23~30% sufficient for effective fuel and oxidant gas supply to electrochemical reaction interfaces and electrical conductivities of around 90 S/cm and 1000 S/cm, respectively, enough for acting as current collecting electrodes. YSZ($ZrO_2-8mol%Y_2O_3$) electrolyte film has a high ionic conductivities of 0.05~0.07 S/cm at $1000^{\circ}C$ in air atmosphere, but appears to be somewhat too porous to reduce the thickness. for enhancing the cell efficiency. A unit tubular SOFC has beem fabricated by the optimized plasma spray processes for each functional coating and the cell. Its electrochemical chracteristics are investigated by measuring voltage-current and power density with variation of operationg temperature, radio of fuel to air gas flowrates, and total gas flowrate of reactants.

  • PDF

진행파의 코리올리효과를 이용한 자가발진형 표면탄성파 초소형 자이로스코프 (A Self-Oscillation Type SAW Microgyroscope Based on the Coriolis Effect of Progressive Waves)

  • 오해관;최기선;이형근;이기근;양상식
    • 전기학회논문지
    • /
    • 제59권2호
    • /
    • pp.390-396
    • /
    • 2010
  • An 80MHz surface acoustic wave (SAW)-based gyroscope utilizing a progressive wave was developed on a piezoelectric substrate. The developed sensor consists of two SAW oscillators in which one is used for sensing element and has metallic dots in the cavity between input and output IDTs. The other is used for a reference element. Coupling of mode (COM) modeling was conducted to determine the optimal device parameters prior to fabrication. According to the simulation results, the device was fabricated and then measured on a rate table. When the device was subjected to an angular rotation, oscillation frequency differences between the two oscillators were observed because of the Coriolis force acting on the metallic dots. Depending on the angular rate, the difference of the oscillation frequency was modulated. The obtained sensitivity was approximately 52.35 Hz/deg.s within the angular rate range of 0~1000 deg/s. The performances of devices with three IDT structures for two kinds of piezoelectric substrates were characterized. Good thermal stability was also observed during the evaluation process.

박용 프로펠라의 스큐각 변화에 따른 피로강도해석 (Fatigue Strength Analysis of Marine Propeller Blade to Change in Skew Angle)

  • 김발영;이주성
    • 대한조선학회논문집
    • /
    • 제35권1호
    • /
    • pp.80-87
    • /
    • 1998
  • 선미의 불균일유동장에서 작동하는 박용 프로펠라의 구조적 안전을 평가하는 강도해석 프로그램을 개발하였다. 이 논문은 여러 가지 선종에 대하여 실선자료를 기초로 하여 선속과 스큐각의 관계를 제시하였고, 대형 고속 컨테이너선박의 초기설계시 강도측면에서 스큐각의 최적화를 위하여 여러 가지 스큐각에 대한 프로펠라 강도해석을 수행하였다. 프로펠라 날개는 양력면이론으로부터 계산된 표면압력과 원심력을 받고 있다. 선박의 전진 및 후진시의 프로펠라날개의 구조응답을 구하기 위하여 정적 구조해석을 수행해서 그 결과를 기초로 피로강도를 평가하였다.

  • PDF

Simple Analysis for Interaction between Nanoparticles and Fluorescence Vesicle as a Biomimetic Cell for Toxicological Studies

  • Umh, Ha Nee;Kim, Younghun
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권12호
    • /
    • pp.3998-4002
    • /
    • 2012
  • With continuing progress of nanotechnologies and various applications of nanoparticles, one needs to develop a quick and fairly standard assessment tool to evaluate cytotoxicity of nanoparticles. However, much cytotoxicity studies on the interpretation of the interaction between nanoparticles and cells are non-mechanistic and time-consuming. Here, we propose a simple screening method for the analysis of the interaction between several AgNPs (5.3 to 64 nm) and fluorescence-dye containing vesicles ($12{\mu}m$) acting as a biomimetic cell-membrane. Fluorescence-dye containing vesicle was prepared using a fluorescence probe (1,6-diphenyl-1,3,5-hexatryene), which was intercalated into the lipid bilayer due to their hydrophobicity. Zeta potential of all materials except for bare-AgNPs (+32.8 mV) was negative (-26 to -54 mV). The morphological change (i.e., rupture and fusion of vesicle, and release of dye) after mixing of the vesicle and AgNPs was observed by fluorescence microscopy, and fluorescence image were different with coating materials and surface charge of x-AgNPs. In the results, we found that the surface charge of nanoparticles is the key factor for vesicle rupture and fusion. This proposed method might be useful for analyzing the cytotoxicity of nanoparticles with cell-membranes instead of in vitro or in vivo cytotoxicity tests.

다꾸찌방법을 사용한 여러변수들이 패키지균열에 미치는 신뢰도 평가 (Estimate of package crack reliabilities on the various parameters using taguchi's method)

  • 권용수;박상선;박재완;채영석;최성렬
    • 대한기계학회논문집A
    • /
    • 제21권6호
    • /
    • pp.951-960
    • /
    • 1997
  • Package crack caused by the soldering process in the surface mounting plastic package is evaluated by applying the maximum energy release rate criterion. It could be shown that the crack propagation from the lower edge of the ie pad is easily occurred at the maximum temperature during the soldering process, where the pressure acting on the crack surface is assumed by the saturated vapor pressure at maximum temperature. The package crack formation depends on various parameters such as chip size, relative thickness, material properties, the moisture content and soldering temperature etc. The quantitative measure of the effects of the parameters could be easily obtained by using the taguchi's method which requires only a few kinds of combinations with such parameters. From the results, it could be obtained that the more significant parameters to effect the package reliability are the orders of Young's modulus, die pad size, down set, chip thickness and maximum soldering temperature.