• 제목/요약/키워드: supporting force

검색결과 386건 처리시간 0.027초

다각 보행로보트의 순응 제어를 위한 힘의 최적 분배 (Optimal Force Distribution for Compliance Control of Multi-legged Walking Robots)

  • 라인환;양원영;정태상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.874-876
    • /
    • 1995
  • Force and compliance control has been used in the control of legged walking vehicles to achieve superior terrain adaptability on rough terrains. The compliance control requires distribution of the vehicle load over the supporting legs. However, the constraint equations for ground reaction forces of supporting legs are generally underdetermined, allowing an infinite number of solutions. Thus, it is possible to apply an optimization criteria in solving the force setpoint problem. It has been observed that the previous force setpoint optimization methods sometimes cause a system stability problem and/or the load distribution among supporting legs is not well balanced due to a memory effect on the solution trajectory, This paper presents an iterative force setpoint method to solve this problem using an interpolation technique. By simulation it was shown that an excessive load unbalance among supporting legs and the memory effect in the force trajectory are alleviated much with the proposed method.

  • PDF

플랜트 설비 지지용 대안 강구조 시스템의 내진성능 (Seismic Performance of Alternative Steel Structural Systems for an Equipment-Supporting Plant Structure)

  • 곽병훈;안숙진;박지훈
    • 한국지진공학회논문집
    • /
    • 제27권1호
    • /
    • pp.13-24
    • /
    • 2023
  • In this study, alternative seismic force-resisting systems for plant structure supporting equipment were designed, and the seismic performance thereof was compared using nonlinear dynamic analysis. One alternative seismic force-resisting system was designed per the requirement for ordinary moment-resisting and concentrically braced frames but with a reduced base shear. The other seismic force-resisting system was designed by accommodating seismic details of intermediate and unique moment-resisting frames and special concentrically braced frames. Different plastic hinge models were applied to ordinary and ductile systems based on the validation using existing test results. The control model obtained by code-based flexible design and/or reduction of base shear did not satisfy the seismic performance objectives, but the alternative structural system did by strengthened panel zones and a reduced effective buckling length. The seismic force to equipment calculated from the nonlinear dynamic analysis was significantly lower than the equivalent static force of KDS 41 17 00. The comparison of design alternatives showed that the seismic performance required for a plant structure could be secured economically by using performance-based design and alternative seismic-force resisting systems adopting minimally modified seismic details.

뇌졸중 환자의 체중지지 비대칭과 보행 대칭성의 관련성 (The Relation between asymmetric weight-supporting and gait symmetry in patients with stroke)

  • 이용우;신두철;이경진;이승원
    • 대한물리의학회지
    • /
    • 제7권2호
    • /
    • pp.205-212
    • /
    • 2012
  • Purpose : The aim of this study was to investigate the relationship between weight-supporting asymmetry and gait symmetry in patients with stroke. Methods : Sixty two stroke patients with hemiplegia stood quietly with eye opens on a force platform to calculate weight-supporting asymmetry from vertical reaction force. The GAITRite was used to evaluate their gait parameters. The data were analyzed using Pearson correlation. Results : The results of this study was showed that the medio-lateral index (ML) was correlated with symmetry rate (SR), symmetry index (SI), and Gait asymmetry (GA) of step time and length but stronger correlation with spatial gait symmetry than temporal symmetry. In gait symmetry, step length has stronger correlation with weight-supporting asymmetry than step time. Conclusions : The results of this study shows weight-supporting asymmetry was correlated with more spatial gait symmetry than temporal symmetry.

장지간 깊은 굴착에서 지반변형 및 버팀보 축력변화 특성 사례연구(II) (Case Study of Characteristic of Ground Deformation and Strut Axial Force Change in Long Span Deep Excavation(II))

  • 김성욱;한병원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.248-259
    • /
    • 2010
  • In the case of relatively good ground and construction condition in the deep excavation for the construction of subway, railway, building etc., flexible earth retaining systems are often used in an economical point of view. It is generally known that the mechanism of behavior in the flexible earth retaining system is relatively more complicated than the rigid earth retaining system. Moreover in the case of long span strut supporting system the analysis of strut axial force change becomes more difficult when the differences of ground condition and excavation work progress on both sides of excavation section are added. When deeper excavation than the specification or installation delay of supporting system is done or change of ground condition is faced due to the construction conditions during construction process, lots of axial force can be induced in some struts and that can threaten the safety of construction. This paper introduces one example of long span deep excavation where struts and rock bolts were used as a supporting system with flexible wall structure. The characteristics of ground deformation and strut axial force change, the measured data obtained during construction process, were analysed, the effects of relatively deeper excavation than the specification on one excavation side and rapid drawdown of ground water level on the other excavation side were deeply investigated from the viewpoint of mutual influences between ground deformations of both excavation sides and strut axial force changes. The effort of this article aims to improve and develop the technique of design and construction in the coming projects having similar ground condition and supporting method.

  • PDF

콤바인 예취장치(刈取裝置)의 절단현상(切斷現象) 및 동적특성(動的特性)에 관한 연구(硏究)(I) -왕복동(往復動) 예취장치(刈取裝置)의 동적특성(動的特性)- (Dynamic Characteristics of the Reciprocating Cutter-bar of Combine Harvester(I))

  • 정창주;이성범;노광모
    • Journal of Biosystems Engineering
    • /
    • 제19권3호
    • /
    • pp.163-174
    • /
    • 1994
  • This study was conducted to investigate the dynamic motion of knife drive system of combine harvester. A computer program was developed to simulate the dynamic motion of the knife drive linkage and its algorithm was evaluated through experiments. The results are summarized as follows : 1. The theorectical horizontal (the direction of knife's reciprocating motion) reaction forces at the supporting point of rocker arm and crank arm were changed in the similar sinusoidal trends with the measured reaction forces. 2. The maximum values of shaking moment and reaction force per one revolution of crank arm followed polynomial trends as the rotational speed of crank shaft increased. The unbalanced force acting on the driving system increased at high speed. Therefore, the rotational speed of crank shaft should be maintained in proper range at increased forward speed to decrease vibration of the knife drive system. 3. The added mass to the crank arm increased the dynamic unbalanced force at the supporting point of rocker arm. It counterbalanced the reaction force at the supporting point of crank arm.

  • PDF

EQS 면진받침 사용 시 온도하중 및 지진하중에 대한 철도교량 레일 압축력 변화 (Variation of Rail's Axial Compressive Force on Railway Bridges Due to Thermal and Seismic Loads with using EQS Bearings)

  • 김이현;김학수;최은수
    • 한국철도학회논문집
    • /
    • 제8권3호
    • /
    • pp.276-285
    • /
    • 2005
  • This study discussed the effect on rail's axial force due to thermal and seismic loads according to supporting conditions of railway bridges; the considered supporting conditions are 1)simply supported, 2)roller at both ends, and 3)roller with horizontal spring at both ends. Closed form solutions are used to calculate the axial farces on rails. The roller at both ends of a bridge span decreases the compressive axial force on rail due to thermal load compared with the simply supported condition. However, the lateral springs at roller are not helpful to decrease the rail's compressive axial force.

고장 난 다리가 있는 사족 보행 로봇의 평탄 직선보행을 위한 효율적인 다리 힘 배분 알고리즘 (An Efficient Foot-Force Distribution Algorithm for Straight-Line Walking of Quadruped Robots with a Failed Leg)

  • 양정민
    • 전기학회논문지
    • /
    • 제57권5호
    • /
    • pp.896-901
    • /
    • 2008
  • This paper addresses the foot force distribution problem for quadruped robots with a failed leg. The quadruped robot has fault-tolerant straight-line gaits with one leg in locked-joint failure, and has discontinuous motion with respect to the robot body. The proposed method is operated in two folds. When the robot body stands still, we use the feature that there are always three supporting legs, and by incorporating the theory of zero-interaction force, we calculate the foot forces analytically without resort to any optimization technique. When the robot body moves, the conventional pseudo-inverse algorithm is applied to obtain the foot forces for supporting legs. Simulation results show the validity of the proposed scheme.

장지간 깊은 굴착에서 지반변형 및 버팀보 축력변화 특성 사례연구(I) (Case Study of Characteristic of Ground Deformation and Strut Axial Force Change in Long Span Deep Excavation(I))

  • 김성욱;한병원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.308-319
    • /
    • 2009
  • In the case of relatively good ground and construction condition in the deep excavation for the construction of subway, railway, building etc., flexible earth retaining systems are often used in an economical point of view. It is generally known that the mechanism of behavior in the flexible earth retaining system is relatively more complicated than the rigid earth retaining system. Moreover in the case of long span strut supporting system the analysis of strut axial force change becomes more difficult when the differences of ground condition and excavation work progress on both sides of excavation section are added. When deeper excavation than the specification or installation delay of supporting system is done or change of ground condition is faced due to the construction conditions during construction process, lots of axial force can be induced in some struts and that can threaten the safety of construction. This paper introduces two examples of long span deep excavation where struts and rock bolts were used as a supporting system with flexible wall structure. And the sections of two examples are 50 meters apart in one construction site, they have almost similar design and construction conditions. The characteristics of ground deformation and strut axial force change were analysed, the similarity and difference between measurement results of tow examples were compared and investigated. The effort of this article aims to improve and develop the technique of design and construction in the coming projects having similar ground condition and supporting method.

  • PDF

노내 연료봉 지지조건 예측 방법론 개발 (Development of A Methodology for In-Reactor Fuel Rod Supporting Condition Prediction)

  • Kim, K. T.;Kim, H. K.;K. H. Yoon
    • Nuclear Engineering and Technology
    • /
    • 제28권1호
    • /
    • pp.17-26
    • /
    • 1996
  • 프레팅마모 기인 연료봉 손상을 방지할 수 있는 노내 연료봉 지지조건은 잔여 지지격자스프링 변위량 또는 연료봉 /지지격자 갭에 의해 평가될 수 있다. 핵연료 설계 인자들이 프레팅마모 손상에 미치는 영향을 평가하기 위해 연소도의 함수로서 노내 연료봉 지지조건을 모사할 수 있는 방법론을 사용하여 GRID-FORCE프로그램을 개발하였다. 이 프로그램에서는 노내 연료봉 지지조건에 영향을 주는 주요 인자로서 피복관 크립, 초기 스프링 변위, 초기 스프링힘 그리고 스프링힘 조사이완이 고려된다. 이 주요 인자들에 대한 민감도 분석 결과, 초기 스프링 변위, 스프링힘 조사이완, 피복관 크립 순으로 노내 연료봉 지지조건에 영향을 주는 것으로 나타났다. 이 프로그램을 실제 노내에서 발생한 프레팅마모 기인 연료봉 손상에 적용한 결과를 토대로 판단해 볼 때 이 프로그램을 새로 개발된 피복관 재질 및 /또는 새로 개발된 지지격자 설계가 프레팅마모 기인 연료봉 손상을 방지할 수 있는 설계여유도를 효과적으로 평가할 수 있음을 알 수 있다.

  • PDF

장지간 깊은 굴착에서 지반변형 및 버팀보 축력변화 특성 사례 연구 (Case Study of the Characteristic of Ground Deformation and the Strut Axial Force Change in Long Span Deep Excavation)

  • 김성욱;한병원
    • 한국지반공학회논문집
    • /
    • 제26권7호
    • /
    • pp.171-186
    • /
    • 2010
  • 일반적으로 강성벽체에 비하여 연성벽체의 경우가 거동 mechanism이 상대적으로 복잡한 것으로 알려져 있으며 여기에다 버팀보 지지의 장지간인 경우 굴착단면 양쪽의 지반조건과 굴착공정의 차이가 부가되면 버팀보 축력변화 분석은 더욱 어렵게 된다. 시공과정에서 현장여건에 의한 과굴착이나 지보재의 설치지연, 지반조건의 변화 등이 발생 할 경우 특정 버팀보에 큰 축력이 발생하여 안전 시공을 위협하게 될 수 있다. 본 논문은 거의 유사한 지반조건, 굴착 및 지보조건을 갖는 동일현장의 약 50m 이격된 2개소의 버팀보 및 rock bolt 지지 장지간 연성벽체 깊은 굴착단면들의 시공과정에서 얻어진 계측결과인 지반변형 및 버팀보 축력변화 특성을 분석하고 2단면 계측결과의 유사성 및 차이점을 비교 고찰함으로써 향후 유사지반 및 동일공법 적용 project들의 설계, 시공과정에서 개선, 보완해야 할 사항 들을 제안하고자 한다.