• Title/Summary/Keyword: support vector machine regression

Search Result 381, Processing Time 0.743 seconds

Energy analysis-based core drilling method for the prediction of rock uniaxial compressive strength

  • Qi, Wang;Shuo, Xu;Ke, Gao Hong;Peng, Zhang;Bei, Jiang;Hong, Liu Bo
    • Geomechanics and Engineering
    • /
    • 제23권1호
    • /
    • pp.61-69
    • /
    • 2020
  • The uniaxial compressive strength (UCS) of rock is a basic parameter in underground engineering design. The disadvantages of this commonly employed laboratory testing method are untimely testing, difficulty in performing core testing of broken rock mass and long and complicated onsite testing processes. Therefore, the development of a fast and simple in situ rock UCS testing method for field use is urgent. In this study, a multi-function digital rock drilling and testing system and a digital core bit dedicated to the system are independently developed and employed in digital drilling tests on rock specimens with different strengths. The energy analysis is performed during rock cutting to estimate the energy consumed by the drill bit to remove a unit volume of rock. Two quantitative relationship models of energy analysis-based core drilling parameters (ECD) and rock UCS (ECD-UCS models) are established in this manuscript by the methods of regression analysis and support vector machine (SVM). The predictive abilities of the two models are comparatively analysed. The results show that the mean value of relative difference between the predicted rock UCS values and the UCS values measured by the laboratory uniaxial compression test in the prediction set are 3.76 MPa and 4.30 MPa, respectively, and the standard deviations are 2.08 MPa and 4.14 MPa, respectively. The regression analysis-based ECD-UCS model has a more stable predictive ability. The energy analysis-based rock drilling method for the prediction of UCS is proposed. This method realized the quick and convenient in situ test of rock UCS.

데이터마이닝을 활용한 한국프로야구 승패예측모형 수립에 관한 연구 (Using Data Mining Techniques to Predict Win-Loss in Korean Professional Baseball Games)

  • 오윤학;김한;윤재섭;이종석
    • 대한산업공학회지
    • /
    • 제40권1호
    • /
    • pp.8-17
    • /
    • 2014
  • In this research, we employed various data mining techniques to build predictive models for win-loss prediction in Korean professional baseball games. The historical data containing information about players and teams was obtained from the official materials that are provided by the KBO website. Using the collected raw data, we additionally prepared two more types of dataset, which are in ratio and binary format respectively. Dividing away-team's records by the records of the corresponding home-team generated the ratio dataset, while the binary dataset was obtained by comparing the record values. We applied seven classification techniques to three (raw, ratio, and binary) datasets. The employed data mining techniques are decision tree, random forest, logistic regression, neural network, support vector machine, linear discriminant analysis, and quadratic discriminant analysis. Among 21(= 3 datasets${\times}$7 techniques) prediction scenarios, the most accurate model was obtained from the random forest technique based on the binary dataset, which prediction accuracy was 84.14%. It was also observed that using the ratio and the binary dataset helped to build better prediction models than using the raw data. From the capability of variable selection in decision tree, random forest, and stepwise logistic regression, we found that annual salary, earned run, strikeout, pitcher's winning percentage, and four balls are important winning factors of a game. This research is distinct from existing studies in that we used three different types of data and various data mining techniques for win-loss prediction in Korean professional baseball games.

Financial Fraud Detection using Data Mining: A Survey

  • Sudhansu Ranjan Lenka;Bikram Kesari Ratha
    • International Journal of Computer Science & Network Security
    • /
    • 제24권9호
    • /
    • pp.169-185
    • /
    • 2024
  • Due to levitate and rapid growth of E-Commerce, most of the organizations are moving towards cashless transaction Unfortunately, the cashless transactions are not only used by legitimate users but also it is used by illegitimate users and which results in trouncing of billions of dollars each year worldwide. Fraud prevention and Fraud Detection are two methods used by the financial institutions to protect against these frauds. Fraud prevention systems (FPSs) are not sufficient enough to provide fully security to the E-Commerce systems. However, with the combined effect of Fraud Detection Systems (FDS) and FPS might protect the frauds. However, there still exist so many issues and challenges that degrade the performances of FDSs, such as overlapping of data, noisy data, misclassification of data, etc. This paper presents a comprehensive survey on financial fraud detection system using such data mining techniques. Over seventy research papers have been reviewed, mainly within the period 2002-2015, were analyzed in this study. The data mining approaches employed in this research includes Neural Network, Logistic Regression, Bayesian Belief Network, Support Vector Machine (SVM), Self Organizing Map(SOM), K-Nearest Neighbor(K-NN), Random Forest and Genetic Algorithm. The algorithms that have achieved high success rate in detecting credit card fraud are Logistic Regression (99.2%), SVM (99.6%) and Random Forests (99.6%). But, the most suitable approach is SOM because it has achieved perfect accuracy of 100%. But the algorithms implemented for financial statement fraud have shown a large difference in accuracy from CDA at 71.4% to a probabilistic neural network with 98.1%. In this paper, we have identified the research gap and specified the performance achieved by different algorithms based on parameters like, accuracy, sensitivity and specificity. Some of the key issues and challenges associated with the FDS have also been identified.

이기종 머신러닝기법을 활용한 KOSPI200 옵션변동성 예측 (Estimation of KOSPI200 Index option volatility using Artificial Intelligence)

  • 신소희;오하영;김장현
    • 한국정보통신학회논문지
    • /
    • 제26권10호
    • /
    • pp.1423-1431
    • /
    • 2022
  • 블랙숄즈모형에서 옵션가격을 결정하는 변수 중 기초자산의 변동성은 현재 시점에서는 알 수 없고, 미래시점에 실현된 변동성을 사후에야 알 수 있다. 하지만 옵션이 거래되는 시장에서 관찰되는 가격이 있기 때문에 가격에 내재된 변동성을 역으로 산출한 내재변동성은 현재 시점에 구할 수 있다. 내재변동성을 구하기 위해서는 옵션가격과, 블랙숄즈 모형의 변동성을 제외한 옵션가격결정변수인 기초자산가격, 무위험이자율, 배당률, 행사가격, 잔존기간이 필요하다. 블랙숄즈모형의 변동성은 고정된 상수이나, 내재변동성 산출시 행사가격에 따라 변동성이 다르게 산출되는 변동성스마일현상을 보이기도 한다. 따라서 내재변동성 산출시 옵션 단일 종목이 아닌 시장전반의 변동성을 감안하는 것이 필요하다고 판단하여 본 연구에서는 V-KOSPI지수도 설명변수로 추가하였다. 머신러닝기법 중 지도학습방법을 사용하였으며, Linear Regression 계열, Tree 계열, SVR과 KNN 알고리즘 및 딥뉴럴네트워크로 학습 및 예측하였다. Training성능은 Decision Tree모형이 99.9%로 가장 높았고 Test성능은 Random Forest 알고리즘이 96.9%로 가장 높았다.

GIS와 기계학습을 이용한 지하수 가능성도 작성 연구 현황 (Status of Groundwater Potential Mapping Research Using GIS and Machine Learning)

  • 이사로
    • 대한원격탐사학회지
    • /
    • 제36권6_1호
    • /
    • pp.1277-1290
    • /
    • 2020
  • 지표수와 지하수로 이루어진 수자원은 세계적으로 가장 중요한 천연자원 중 하나로 여겨진다. 지난 세기 이후 급속한 산업화와 급증하는 인구로 인해, 생활용, 산업용, 농업용수 수요가 급증하고 있으며, 이에 대한 지하수 수요도 급증하고 있다. 따라서 지하수에 대한 지속 가능한 개발과 관리를 위해서는 정확한 위치기반의 지하수 가능성도 작성이 필수적이다. 최근에는 기계학습과 지리정보시스템 통합이 지하수 가능성도 작성에 효과적인 방법이 되고 있다. 이러한 통합접근법의 현황 파악을 위해 6년(2015~2020년) 동안 94편의 직접 관련 논문에 대한 체계적 검토를 실시했다. 문헌 검토에 따르면, 매년 발간되는 연구의 수는 시간이 지남에 따라 급격히 증가했다. 전체 연구 분야는 15개국에 걸쳐 있으며, 85%의 연구가 이란, 인도, 중국, 한국, 이라크에 집중되었다. 지하수 산출 가능성 조사에는 20개의 변수가 자주 사용된 것으로 조사되었으며, 이 중 지형고도, 경사, 경사방향, 지형습도지수, 지질, 토지 이용 피복, 하천 밀도, 강과의 거리, 강우량 등이 자주 사용되는 것으로 나타났다. 기계학습 모델에 있어 랜덤 포레스트, 서포트벡터머신, 부스트 회귀트리 등의 방법이 많이 사용되었다. 이러한 문헌 연구는 최적의 결과를 위해 지하수 가능성도를 저비용 대체물이 아닌 현장 작업을 보완하는 도구로 사용해야 한다는 것을 보여준다. 마지막으로, 향후, 지하수 가능성도 작성의 표준화 및 정확성을 개선하기 위해 더 많은 연구가 진행되어야 할 것이다.

다시기 Landsat TM 영상과 기계학습을 이용한 토지피복변화에 따른 산림탄소저장량 변화 분석 (Change Analysis of Aboveground Forest Carbon Stocks According to the Land Cover Change Using Multi-Temporal Landsat TM Images and Machine Learning Algorithms)

  • 이정희;임정호;김경민;허준
    • 한국지리정보학회지
    • /
    • 제18권4호
    • /
    • pp.81-99
    • /
    • 2015
  • 가속되는 지구온난화로 인해 한반도 주변의 탄소순환에 대한 명확한 이해의 필요성이 제기되고 있다. 산림은 이산화탄소의 주요 흡수원으로 지상 탄소량의 대부분을 저장하고 있어 이에 대한 추정이 필요하다. 우리나라에서는 국가산림자원조사의 표본점에서 측정되는 헥타르당 임목축적량을 활용하여 산림 탄소저장량을 추정한다. 하지만 탄소저장량은 요약된 수치 형태로 발표하고 있어 탄소저장량의 공간적 분포를 파악하는 것이 어렵다. 본 연구에서는 토지피복변화가 빠르고 국가산림자원조사 표본점 배치가 부족한 도시지역을 대상으로 UNFCCC의 Approach 3와 Tier 3를 충족하는 격자 기반 산림탄소저장량을 추정하였다. 토지피복변화 및 산림탄소저장량은 1991, 1992, 2010, 2011년에 취득된 Landsat 5 TM 영상과 고해상도 항공사진, 제 3차 및 제 5, 6차 국가산림자원조사 자료를 이용하여 추정하였다. 토지피복변화는 기계학습을 이용하여 변화된 토지피복과 변화되지 않은 토지피복 항목을 한 번에 분류하여 추정하였으며, 산림탄소저장량은 반사도, 밴드비율, 식생지수, 지형변수를 입력변수로 하여 기계학습을 통해 추정하였다. 연구 결과, 산림이 그대로 산림으로 유지되는 지역의 경우 33.23tonC/ha의 흡수를 하였으며 비산림이 산림으로 변한 지역의 경우 이보다 큰 36.83tonC/ha의 흡수가 진행된 것으로 추정되었다. 산림이 비산림으로 바뀐 경우에는 -7.35tonC/ha로, 배출이 일어난 것으로 추정되었다. 본 연구를 통하여 토지피복변화에 따른 산림탄소저장량 변화를 정량적으로 이해할 수 있었으며, 향후 효율적인 산림관리에 기여할 수 있을 것으로 판단된다.

머신러닝 기반 페로브스카이트 태양전지 광흡수층 박막 최적화를 위한 연구 (A Study on Optimization of Perovskite Solar Cell Light Absorption Layer Thin Film Based on Machine Learning)

  • 하재준;이준혁;오주영;이동근
    • 한국콘텐츠학회논문지
    • /
    • 제22권7호
    • /
    • pp.55-62
    • /
    • 2022
  • 페로브스카이트 태양전지는 4차 산업혁명으로 사물인터넷, 가상환경 등의 증가에 따른 전력 수요가 급증하면서 점진적으로 고갈되어가는 석유, 석탄, 천연가스 등의 화석연료를 대체할 태양에너지, 풍력, 수력, 해양에너지, 바이오에너지, 수소에너지 등의 신재생 에너지 분야에서 연구가 활발한 부분이다. 페로브스카이트 태양전지는 페로브스카이트 구조를 가진 유-무기 하이브리드 물질을 사용하는 태양전지 소자로 고효율, 저가의 용액 및 저온 공정으로 기존의 실리콘 태양전지를 대체할 수 있는 장점들이 있다. 기존의 경험적 방법으로 예측한 광흡수층 박막을 최적화하기 위해서 소자 특성 평가를 통해 신뢰도를 검증해야 한다. 그러나 광흡수층 박막 소자 특성 평가 비용이 많이 소요되므로 시험 횟수에 제약이 따른다. 이러한 문제점을 해결하기 위하여 광흡수층 박막 최적화의 보조 수단으로 머신러닝이나 인공지능 모델을 이용하여 명확하고 타당한 모델의 개발과 적용 가능성이 무한하다고 본다. 이 연구에서는 페로브스카이트 태양전지의 광 흡수층 박막 최적화를 추정하기 위하여 서포트 벡터 머신의 선형 커널, 가우시안 커널, 비선형 다항식 커널, 시그모이드 커널의 회귀분석 모델을 비교하여 커널 함수별 정확도 차이를 검증하였다.

머신러닝 기반 KOSDAQ 시장의 관리종목 지정 예측 연구: 재무적 데이터를 중심으로 (Study on Predicting the Designation of Administrative Issue in the KOSDAQ Market Based on Machine Learning Based on Financial Data)

  • 윤양현;김태경;김수영
    • 벤처창업연구
    • /
    • 제17권1호
    • /
    • pp.229-249
    • /
    • 2022
  • 본 연구는 다양한 머신러닝 기법을 통해 코스닥(KOSDAQ) 시장 내 관리종목 지정을 예측할 수 있는 모델에 대해 연구하였다. 증권시장 내 기업이 관리종목으로 지정이 되면 시장에서는 이를 부정적인 정보로 인식하여 해당 기업과 투자자에게 손실을 가져오게 된다. 본 연구를 통해 기업의 재무적 데이터를 바탕으로 조기에 관리종목 지정을 예측하고, 투자자들의 포트폴리오 리스크 관리에 도움을 주기 위한 머신러닝 접근이 타당한지 살펴본다. 본 연구를 위해 활용한 독립변수는 수익성, 안정성, 활동성, 성장성을 나타내는 21개의 재무비율을 활용하였으며, K-IFRS가 적용된 2011년부터 2020년까지 관리종목과 비관리종목의 기업의 재무 데이터를 표본으로 추출하였다. 로지스틱 회귀분석, 의사결정나무, 서포트 벡터 머신, 랜덤 포레스트, LightGBM을 활용하여 관리종목 지정 예측 연구를 수행하였다. 연구결과는 분류 정확도가 82.73%인 LightGBM이 가장 우수한 예측 모형이었으며 분류 정확도가 가장 낮은 예측 모형은 정확도가 71.94%인 의사결정나무였다. 의사결정나무 기반 학습 모형의 변수 중요도의 상위 3개 변수를 확인한 결과 각 모형에서 공통적으로 나온 재무변수는 ROE(당기순이익), 자본금회전율(Capital stock turnover ratio)로 해당 재무변수가 관리종목 지정에 있어 상대적으로 중요한 변수임을 확인하였다. 대체적으로 앙상블을 이용한 학습 모형이 단일 학습 모형보다 예측 성능이 높은 것을 확인하였다. 기존 선행연구가 K-IFRS에 대한 고려를 하지 않았고, 다소 제한된 머신러닝에 의존하였다. 따라서 본 연구의 필요성과 함께 현실적 요구를 충족시키는 결과를 제시하였음을 알 수 있으며, 시장참여자들에게 있어 관리종목 지정에 대한 사전 예측을 확인할 수 있도록 기여했다고 볼 수 있다.

Reliability of mortar filling layer void length in in-service ballastless track-bridge system of HSR

  • Binbin He;Sheng Wen;Yulin Feng;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • 제47권1호
    • /
    • pp.91-102
    • /
    • 2023
  • To study the evaluation standard and control limit of mortar filling layer void length, in this paper, the train sub-model was developed by MATLAB and the track-bridge sub-model considering the mortar filling layer void was established by ANSYS. The two sub-models were assembled into a train-track-bridge coupling dynamic model through the wheel-rail contact relationship, and the validity was corroborated by the coupling dynamic model with the literature model. Considering the randomness of fastening stiffness, mortar elastic modulus, length of mortar filling layer void, and pier settlement, the test points were designed by the Box-Behnken method based on Design-Expert software. The coupled dynamic model was calculated, and the support vector regression (SVR) nonlinear mapping model of the wheel-rail system was established. The learning, prediction, and verification were carried out. Finally, the reliable probability of the amplification coefficient distribution of the response index of the train and structure in different ranges was obtained based on the SVR nonlinear mapping model and Latin hypercube sampling method. The limit of the length of the mortar filling layer void was, thus, obtained. The results show that the SVR nonlinear mapping model developed in this paper has a high fitting accuracy of 0.993, and the computational efficiency is significantly improved by 99.86%. It can be used to calculate the dynamic response of the wheel-rail system. The length of the mortar filling layer void significantly affects the wheel-rail vertical force, wheel weight load reduction ratio, rail vertical displacement, and track plate vertical displacement. The dynamic response of the track structure has a more significant effect on the limit value of the length of the mortar filling layer void than the dynamic response of the vehicle, and the rail vertical displacement is the most obvious. At 250 km/h - 350 km/h train running speed, the limit values of grade I, II, and III of the lengths of the mortar filling layer void are 3.932 m, 4.337 m, and 4.766 m, respectively. The results can provide some reference for the long-term service performance reliability of the ballastless track-bridge system of HRS.

돌발홍수 예보를 위한 빅데이터 분석방법 (The big data method for flash flood warning)

  • 박다인;윤상후
    • 디지털융복합연구
    • /
    • 제15권11호
    • /
    • pp.245-250
    • /
    • 2017
  • 돌발홍수는 강우유출수가 하천으로 모여드는 유역이 좁은 지역에 집중호우로 인해 유입되는 물의 양이 급증하여 나타난다. 돌발홍수는 유속이 빠르고 홍수를 대비할 수 있는 시간이 부족하므로 인명과 재산상의 피해를 발생시킨다. 본 연구에서는 돌발홍수를 예보를 위한 빅데이터 분석방법을 수행하였다. 연구 자료는 2009년에서 2012년까지 국민안전처 국가재난정보센터에 보고된 38건의 홍수 피해 자료와 지표수문모형(TOPLATS)에 의해 생성된 수문기상정보인 강우량, 토양수분 상태, 지표유출량이다. 돌발홍수 발생 선행 6시간의 강우량, 토양수분 상태, 지표유출량 데이터를 요인분석을 통해 토양수분 상태, 장기요인에 의한 강우량과 지표유출량, 단기요인에 의한 강우량과 지표유출량으로 축소하였다. 빅데이터 분석 방법으로는 유형분석인 의사결정나무, 랜덤포레스트, 나이브베이즈, 서포트벡터머신, 로지스틱 회귀모형을 사용하였다. 돌발홍수 사고발생 자료가 38건으로 한정되어 있기 때문에 예측성능 정확도 판단이 중요하다. 예측성능 정확도 평가방법으로 kappa계수, TP Rate, FP Rate, F-Measure를 이용하였다. 이 외에 돌발홍수 발생 선행 시점별 재현성 평가와 과거 4년간 돌발홍수 경보 횟수를 통해 최적 유형분석 방법을 제시하였다. 연구결과 로지스틱회귀모형과 랜덤포레스트가 돌발홍수 예보를 위한 예측 성능이 가장 좋았다. 사고발생 자료가 2009년부터 2012년까지 38건으로 한정되어 있어 분석을 위한 훈련자료와 검증자료 구축에 한계가 있었다. 장기간의 자료가 수집된다면 더욱 정확한 빅데이터 분석을 수행할 수 있다.