• Title/Summary/Keyword: support vector machine(SVM)

Search Result 1,266, Processing Time 0.037 seconds

Multiclass LS-SVM ensemble for large data

  • Hwang, Hyungtae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1557-1563
    • /
    • 2015
  • Multiclass classification is typically performed using the voting scheme method based on combining binary classifications. In this paper we propose multiclass classification method for large data, which can be regarded as the revised one-vs-all method. The multiclass classification is performed by using the hat matrix of least squares support vector machine (LS-SVM) ensemble, which is obtained by aggregating individual LS-SVM trained on each subset of whole large data. The cross validation function is defined to select the optimal values of hyperparameters which affect the performance of multiclass LS-SVM proposed. We obtain the generalized cross validation function to reduce computational burden of cross validation function. Experimental results are then presented which indicate the performance of the proposed method.

Bearing Fault Diagnosis using Adaptive Self-Tuning Support Vector Machine (적응적 자가 튜닝 서포트벡터머신을 이용한 베어링 고장 진단)

  • Kim, Jaeyoung;Kim, Jong-Myon;Choi, Byeong-Keun;Son, Seok-Man
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.01a
    • /
    • pp.19-20
    • /
    • 2016
  • 본 논문에서는 서포트 벡터 머신 (SVM)의 분류 성능에 영향을 주는 인수인 C와 ${\sigma}$ 값을 적응적으로 최적화할 수 있는 적응적 자가튜닝 SVM을 이용한 베어링의 상태 진단 방법을 제안한다. SVM의 각 인수의 변화에 따른 베어링 상태 진단의 성능 변화 패턴을 분석하여 적합한 인수를 적응적으로 찾을 수 있는 방법을 제안하고, 제안한 방법의 우수성을 검증하기 위해 실제 베어링 신호를 이용하여 기존방법인 격자탐색과의 성능을 비교하였다.

  • PDF

Recognition Performance Comparison to Various Features for Speech Recognizer Using Support Vector Machine (음성 인식기를 위한 다양한 특징 파라메터의 SVM 인식 성능 비교)

  • 김평환;박정원;김창근;이광석;허강인
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.78-81
    • /
    • 2003
  • 본 논문은 SVM(support vector machine)을 이용한 음성인식기에 대해 효과적인 특징 파라메터를 제안한다. SVM은 특징 공간에서 비선형 경계를 찾아 분류하는 방법으로 적은 학습 데이터에서도 좋은 분류 성능을 나타낸다고 알려져 있으며 최적의 특징 파라메터를 선택하기 위해 본 논문에서는 SVM을 이용한 음성인식기를 사용하여 PCA(principal component analysis), ICA(independent component analysis) 알고리즘을 적용하여 MFCC(met frequency cepstrum coefficient)의 특징 공간을 변화시키면서 각각의 인식 성능을 비교 검토하였다. 실험 결과 ICA에 의한 특징 파라메터가 가장 우수한 성능을 나타내었으며 특징 공간에서 각 클래스의 분포도 또한 ICA가 가장 높은 선형 분별성을 나타내었다.

  • PDF

A Study on Target Recognition with SAR Image using Support Vector Machine based on Principal Component Analysis (PCA 기반의 SVM을 이용한 SAR 이미지의 표적 인식에 관한 연구)

  • Jang, Hayoung;Lee, Yillbyung
    • Annual Conference of KIPS
    • /
    • 2011.11a
    • /
    • pp.434-437
    • /
    • 2011
  • 차세대 지능적 무기체계의 자동화를 목표로 SAR(Synthetic Aperture Radar) 영상 신호를 이용한 표적 인식률 향상을 위한 여러가지 방법들이 제안되어 왔다. 기존의 연구들은 SAR 영상의 고차원 특징을 그대로 사용했기 때문에 표적 인식의 성능저하가 있었다. 본 연구에서는 정보 획득 거리가 길고, 날씨에 제약이 없이 전천후 작전 운용이 가능하도록 레이더의 특징과 고해상도 영상을 결합한 SAR 이미지를 이용한 표적 인식률 향상 방법을 제안한다. 효과적인 표적 인식을 하기위해 고차원의 특징벡터를 저차원의 특징벡터로 축소하는 PCA(Principal Component Analysis)를 기반으로 하는 SVM(Support Vector Machine)을 사용한 표적 인식 기법을 사용하였고, PCA 기반의 SVM 분류기를 이용한 표적 인식이 SVM 만을 사용한 표적 인식보다 향상된 성능을 보인 것을 확인하였다.

Fuzzy Support Vector Machine for Pattern Classification of Time Series Data of KOSPI200 Index (시계열 자료 코스피200의 패턴분류를 위한 퍼지 서포트 벡타 기계)

  • Lee, S.Y.;Sohn, S.Y.;Kim, C.E.;Lee, Y.B.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.52-56
    • /
    • 2004
  • The Information of classification and estimate about KOSPI200 index`s up and down in the stock market becomes an important standard of decision-making in designing portofolio in futures and option market. Because the coming trend of time series patterns, an economic indicator, is very subordinate to the most recent economic pattern, it is necessary to study the recent patterns most preferentially. This paper compares classification and estimated performance of SVM(Support Vector Machine) and Fuzzy SVM model that are getting into the spotlight in time series analyses, neural net models and various fields. Specially, it proves that Fuzzy SVM is superior by presenting the most suitable dimension to fuzzy membership function that has time series attribute in accordance with learning Data Base.

Android Malware Detection Using Permission-Based Machine Learning Approach (머신러닝을 이용한 권한 기반 안드로이드 악성코드 탐지)

  • Kang, Seongeun;Long, Nguyen Vu;Jung, Souhwan
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.3
    • /
    • pp.617-623
    • /
    • 2018
  • This study focuses on detection of malicious code through AndroidManifest permissoion feature extracted based on Android static analysis. Features are built on the permissions of AndroidManifest, which can save resources and time for analysis. Malicious app detection model consisted of SVM (support vector machine), NB (Naive Bayes), Gradient Boosting Classifier (GBC) and Logistic Regression model which learned 1,500 normal apps and 500 malicious apps and 98% detection rate. In addition, malicious app family identification is implemented by multi-classifiers model using algorithm SVM, GPC (Gaussian Process Classifier) and GBC (Gradient Boosting Classifier). The learned family identification machine learning model identified 92% of malicious app families.

Gesture Recognition using MHI Shape Information (MHI의 형태 정보를 이용한 동작 인식)

  • Kim, Sang-Kyoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.4
    • /
    • pp.1-13
    • /
    • 2011
  • In this paper, we propose a gesture recognition system to recognize motions using the shape information of MHI (Motion History Image). The system acquires MHI to provide information on motions from images with input and extracts the gradient images from such MHI for each X and Y coordinate. It extracts the shape information by applying the shape context to each gradient image and uses the extracted pattern information values as the feature values. It recognizes motions by learning and classifying the obtained feature values with a SVM (Support Vector Machine) classifier. The suggested system is able to recognize the motions for multiple people as well as to recognize the direction of movements by using the shape information of MHI. In addition, it shows a high ratio of recognition with a simple method to extract features.

Hybrid Fuzzy Least Squares Support Vector Machine Regression for Crisp Input and Fuzzy Output

  • Shim, Joo-Yong;Seok, Kyung-Ha;Hwang, Chang-Ha
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.2
    • /
    • pp.141-151
    • /
    • 2010
  • Hybrid fuzzy regression analysis is used for integrating randomness and fuzziness into a regression model. Least squares support vector machine(LS-SVM) has been very successful in pattern recognition and function estimation problems for crisp data. This paper proposes a new method to evaluate hybrid fuzzy linear and nonlinear regression models with crisp inputs and fuzzy output using weighted fuzzy arithmetic(WFA) and LS-SVM. LS-SVM allows us to perform fuzzy nonlinear regression analysis by constructing a fuzzy linear regression function in a high dimensional feature space. The proposed method is not computationally expensive since its solution is obtained from a simple linear equation system. In particular, this method is a very attractive approach to modeling nonlinear data, and is nonparametric method in the sense that we do not have to assume the underlying model function for fuzzy nonlinear regression model with crisp inputs and fuzzy output. Experimental results are then presented which indicate the performance of this method.

Optimal design of homogeneous earth dams by particle swarm optimization incorporating support vector machine approach

  • Mirzaei, Zeinab;Akbarpour, Abolfazl;Khatibinia, Mohsen;Siuki, Abbas Khashei
    • Geomechanics and Engineering
    • /
    • v.9 no.6
    • /
    • pp.709-727
    • /
    • 2015
  • The main aim of this study is to introduce optimal design of homogeneous earth dams with oblique and horizontal drains based on particle swarm optimization (PSO) incorporating weighted least squares support vector machine (WLS-SVM). To achieve this purpose, the upstream and downstream slopes of earth dam, the length of oblique and horizontal drains and angle among the drains are considered as the design variables in the optimization problem of homogeneous earth dams. Furthermore, the seepage through dam body and the weight of dam as objective functions are minimized in the optimization process simultaneously. In the optimization procedure, the stability coefficient of the upstream and downstream slopes and the seepage through dam body as the hydraulic responses of homogeneous earth dam are required. Hence, the hydraulic responses are predicted using WLS-SVM approach. The optimal results of illustrative examples demonstrate the efficiency and computational advantages of PSO with WLS-SVM in the optimal design of homogeneous earth dams with drains.

Support vector ensemble for incipient fault diagnosis in nuclear plant components

  • Ayodeji, Abiodun;Liu, Yong-kuo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1306-1313
    • /
    • 2018
  • The randomness and incipient nature of certain faults in reactor systems warrant a robust and dynamic detection mechanism. Existing models and methods for fault diagnosis using different mathematical/statistical inferences lack incipient and novel faults detection capability. To this end, we propose a fault diagnosis method that utilizes the flexibility of data-driven Support Vector Machine (SVM) for component-level fault diagnosis. The technique integrates separately-built, separately-trained, specialized SVM modules capable of component-level fault diagnosis into a coherent intelligent system, with each SVM module monitoring sub-units of the reactor coolant system. To evaluate the model, marginal faults selected from the failure mode and effect analysis (FMEA) are simulated in the steam generator and pressure boundary of the Chinese CNP300 PWR (Qinshan I NPP) reactor coolant system, using a best-estimate thermal-hydraulic code, RELAP5/SCDAP Mod4.0. Multiclass SVM model is trained with component level parameters that represent the steady state and selected faults in the components. For optimization purposes, we considered and compared the performances of different multiclass models in MATLAB, using different coding matrices, as well as different kernel functions on the representative data derived from the simulation of Qinshan I NPP. An optimum predictive model - the Error Correcting Output Code (ECOC) with TenaryComplete coding matrix - was obtained from experiments, and utilized to diagnose the incipient faults. Some of the important diagnostic results and heuristic model evaluation methods are presented in this paper.