• Title/Summary/Keyword: support vector machine(SVM)

Search Result 1,266, Processing Time 0.031 seconds

A SNP Harvester Analysis to Better Detect SNPs of CCDC158 Gene That Are Associated with Carcass Quality Traits in Hanwoo

  • Lee, Jea-Young;Lee, Jong-Hyeong;Yeo, Jung-Sou;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.6
    • /
    • pp.766-771
    • /
    • 2013
  • The purpose of this study was to investigate interaction effects of genes using a Harvester method. A sample of Korean cattle, Hanwoo (n = 476) was chosen from the National Livestock Research Institute of Korea that were sired by 50 Korean proven bulls. The steers were born between the spring of 1998 and the autumn of 2002 and reared under a progeny-testing program at the Daekwanryeong and Namwon branches of NLRI. The steers were slaughtered at approximately 24 months of age and carcass quality traits were measured. A SNP Harvester method was applied with a support vector machine (SVM) to detect significant SNPs in the CCDC158 gene and interaction effects between the SNPs that were associated with average daily gains, cold carcass weight, longissimus dorsi muscle area, and marbling scores. The statistical significance of the major SNP combinations was evaluated with $x^2$-statistics. The genotype combinations of three SNPs, g.34425+102 A>T(AA), g.4102636T>G(GT), and g.11614-19G>T(GG) had a greater effect than the rest of SNP combinations, e.g. 0.82 vs. 0.75 kg, 343 vs. 314 kg, 80.4 vs $74.7cm^2$, and 7.35 vs. 5.01, for the four respective traits (p<0.001). Also, the estimates were greater compared with single SNPs analyzed (the greatest estimates were 0.76 kg, 320 kg, $75.5cm^2$, and 5.31, respectively). This result suggests that the SNP Harvester method is a good option when multiple SNPs and interaction effects are tested. The significant SNPs could be applied to improve meat quality of Hanwoo via marker-assisted selection.

Energy analysis-based core drilling method for the prediction of rock uniaxial compressive strength

  • Qi, Wang;Shuo, Xu;Ke, Gao Hong;Peng, Zhang;Bei, Jiang;Hong, Liu Bo
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.61-69
    • /
    • 2020
  • The uniaxial compressive strength (UCS) of rock is a basic parameter in underground engineering design. The disadvantages of this commonly employed laboratory testing method are untimely testing, difficulty in performing core testing of broken rock mass and long and complicated onsite testing processes. Therefore, the development of a fast and simple in situ rock UCS testing method for field use is urgent. In this study, a multi-function digital rock drilling and testing system and a digital core bit dedicated to the system are independently developed and employed in digital drilling tests on rock specimens with different strengths. The energy analysis is performed during rock cutting to estimate the energy consumed by the drill bit to remove a unit volume of rock. Two quantitative relationship models of energy analysis-based core drilling parameters (ECD) and rock UCS (ECD-UCS models) are established in this manuscript by the methods of regression analysis and support vector machine (SVM). The predictive abilities of the two models are comparatively analysed. The results show that the mean value of relative difference between the predicted rock UCS values and the UCS values measured by the laboratory uniaxial compression test in the prediction set are 3.76 MPa and 4.30 MPa, respectively, and the standard deviations are 2.08 MPa and 4.14 MPa, respectively. The regression analysis-based ECD-UCS model has a more stable predictive ability. The energy analysis-based rock drilling method for the prediction of UCS is proposed. This method realized the quick and convenient in situ test of rock UCS.

A Study on the Prediction Model Considering the Multicollinearity of Independent Variables in the Seawater Reverse Osmosis (역삼투압 해수담수화(SWRO) 플랜트에서 독립변수의 다중공선성을 고려한 예측모델에 관한 연구)

  • Han, In sup;Yoon, Yeon-Ah;Chang, Tai-Woo;Kim, Yong Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.1
    • /
    • pp.171-186
    • /
    • 2020
  • Purpose: The purpose of this study is conducting of predictive models that considered multicollinearity of independent variables in order to carry out more efficient and reliable predictions about differential pressure in seawater reverse osmosis. Methods: The main variables of each RO system are extracted through factor analysis. Common variables are derived through comparison of RO system # 1 and RO system # 2. In order to carry out the prediction modeling about the differential pressure, which is the target variable, we constructed the prediction model reflecting the regression analysis, the artificial neural network, and the support vector machine in R package, and figured out the superiority of the model by comparing RMSE. Results: The number of factors extracted from factor analysis of RO system #1 and RO system #2 is same. And the value of variability(% Var) increased as step proceeds according to the analysis procedure. As a result of deriving the average RMSE of the models, the overall prediction of the SVM was superior to the other models. Conclusion: This study is meaningful in that it has been conducting a demonstration study of considering the multicollinearity of independent variables. Before establishing a predictive model for a target variable, it would be more accurate predictive model if the relevant variables are derived and reflected.

State detection of explosive welding structure by dual-tree complex wavelet transform based permutation entropy

  • Si, Yue;Zhang, ZhouSuo;Cheng, Wei;Yuan, FeiChen
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.569-583
    • /
    • 2015
  • Recent years, explosive welding structures have been widely used in many engineering fields. The bonding state detection of explosive welding structures is significant to prevent unscheduled failures and even catastrophic accidents. However, this task still faces challenges due to the complexity of the bonding interface. In this paper, a new method called dual-tree complex wavelet transform based permutation entropy (DTCWT-PE) is proposed to detect bonding state of such structures. Benefiting from the complex analytical wavelet function, the dual-tree complex wavelet transform (DTCWT) has better shift invariance and reduced spectral aliasing compared with the traditional wavelet transform. All those characters are good for characterizing the vibration response signals. Furthermore, as a statistical measure, permutation entropy (PE) quantifies the complexity of non-stationary signals through phase space reconstruction, and thus it can be used as a viable tool to detect the change of bonding state. In order to more accurate identification and detection of bonding state, PE values derived from DTCWT coefficients are proposed to extract the state information from the vibration response signal of explosive welding structure, and then the extracted PE values serve as input vectors of support vector machine (SVM) to identify the bonding state of the structure. The experiments on bonding state detection of explosive welding pipes are presented to illustrate the feasibility and effectiveness of the proposed method.

Feasibility of Using Similar Electrocardiography Measured around the Ears to Develop a Personal Authentication System (귀 주변에서 측정한 유사 심전도 기반 개인 인증 시스템 개발 가능성)

  • Choi, Ga-Young;Park, Jong-Yoon;Kim, Da-Yeong;Kim, Yeonu;Lim, Ji-Heon;Hwang, Han-Jeong
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.42-47
    • /
    • 2020
  • A personal authentication system based on biosignals has received increasing attention due to its relatively high security as compared to traditional authentication systems based on a key and password. Electrocardiography (ECG) measured from the chest or wrist is one of the widely used biosignals to develop a personal authentication system. In this study, we investigated the feasibility of using similar ECG measured behind the ears to develop a personal authentication system. To this end, similar ECGs were measured from thirty subjects using a pair of three electrodes attached behind each of the ears during resting state during which the standard Lead-I ECG was also simultaneously measured from both wrists as baseline ECG. The three ECG components, Q, R, and S, were extracted for each subject as classification features, and authentication accuracy was estimated using support vector machine (SVM) based on a 5×5-fold cross-validation. The mean authentication accuracies of Lead I-ECG and similar ECG were 90.41 ± 8.26% and 81.15 ± 7.54%, respectively. Considering a chance level of 3.33% (=1/30), the mean authentication performance of similar ECG could demonstrate the feasibility of using similar ECG measured behind the ears on the development of a personal authentication system.

Classification and evaluation of river environment using Hyperspectral images (초분광 영상정보를 활용한 하천환경 분류 및 평가)

  • Han, Hyeong Jun;Lee, Chang Hun;Kang, Joon Gu;Kim, Jong Tae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.423-423
    • /
    • 2019
  • RGB나 다중분광영상은 높은 공간 해상도로 인해 크기가 작은 물질의 클래스를 부여하는데 있어서는 효과적이지만 분광해상도가 낮아 다양한 종류의 지표물 분류 및 분광적으로 미세한 차이를 보이는 대상 체간의 분류에는 한계를 가지고 있다. 그러나 초분광 영상(Hyperspectral Image)은 대상 객체의 분광 반사곡선을 수백개의 연속적인 분광 파장대 영역으로 상세하게 해당 물체의 정보를 취득할 수 있는 기능을 가지고 있다. 최근 국내에서도 초분광 영상을 이용한 토지피복도 작성 및 환경 모니터링 등 다양한 분야에 적용하기 위한 연구가 시도되고 있다. 최근에는 드론과 같은 소형 UAV를 활용하여 경제적인 비용으로 시공간해상도가 높은 영상을 획득하는 것이 가능하게 되었으며 분광정보를 수집하는 영상 장비의 발전으로 드론에 탑재가 가능한 경량의 소형 초분광센서가 개발됨으로써 보다 높은 분광해상도의 영상을 취득할 수 있게 되었다. 본 연구에서는 효율적인 하천환경조사를 위해 UAV를 활용하여 고해상도 초분광 영상을 취득하였으며, 차원축소법과 분류기 적용에 따른 공간 분류 정확도 분석을 통해 하천환경에 대한 분류 및 평가를 실시하였다. 연구지역에서 획득한 초분광 영상은 노이즈로 인한 영향을 줄이고자 MNF와 PCA 기법으로 차원축소를 수행하였으며, MLC(Maximum Likelihood Classification)와 SVM(Support Vector Machine), SAM(Spectral Angle Mapping) 감독분류기법을 적용하여 하천환경특성에 따른 공간분류를 수행하였다. 연구 결과 MNF기법으로 차원 축소한 영상을 적용하여 MLC 감독분류를 수행하였을 때 가장 높은 분류정확도를 얻을 수 있었으나, 일부 클래스 및 수역의 경계와 그림자 공간에서 주로 오분류가 나타나는 것을 확인할 수 있었다.

  • PDF

Prediction of Alcohol Consumption Based on Biosignals and Assessment of Driving Ability According to Alcohol Consumption (생체 신호 기반 음주량 예측 및 음주량에 따른 운전 능력 평가)

  • Park, Seung Won;Choi, Jun won;Kim, Tae Hyun;Seo, Jeong Hun;Jeong, Myeon Gyu;Lee, Kang In;Kim, Han Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.27-34
    • /
    • 2022
  • Drunk driving defines a driver as unable to drive a vehicle safely due to drinking. To crack down on drunk driving, alcohol concentration evaluates through breathing and crack down on drinking using S-shaped courses. A method for assessing drunk driving without using BAC or BrAC is measurement via biosignal. Depending on the individual specificity of drinking, alcohol evaluation studies through various biosignals need to be conducted. In this study, we measure biosignals that are related to alcohol concentration, predict BrAC through SVM, and verify the effectiveness of the S-shaped course. Participants were 8 men who have a driving license. Subjects conducted a d2 test and a scenario evaluation of driving an S-shaped course when they attained BrAC's certain criteria. We utilized SVR to predict BrAC via biosignals. Statistical analysis used a one-way Anova test. Depending on the amount of drinking, there was a tendency to increase pupil size, HR, normLF, skin conductivity, body temperature, SE, and speed, while normHF tended to decrease. There was no apparent change in the respiratory rate and TN-E. The result of the D2 test tended to increase from 0.03% and decrease from 0.08%. Measured biosignals have enabled BrAC predictions using SVR models to obtain high Figs in primary and secondary cross-validations. In this study, we were able to predict BrAC through changes in biosignals and SVMs depending on alcohol concentration and verified the effectiveness of the S-shaped course drinking control method.

Damage Proxy Map over Collapsed Structure in Ansan Using COSMO-SkyMed Data

  • Nur, Arip Syaripudin;Fadhillah, Muhammad Fulki;Jung, Young-Hoon;Nam, Boo Hyun;Kim, Yong Je;Park, Yu-Chul;Lee, Chang-Wook
    • The Journal of Engineering Geology
    • /
    • v.32 no.3
    • /
    • pp.363-376
    • /
    • 2022
  • An area under construction for a living facility collapsed around 12:48 KST on 13 January 2021 in Sa-dong, Ansan-si, Gyeonggi-do. There were no casualties due to the rapid evacuation measure, but part of the temporary retaining facility collapsed, and several cracks occurred in the adjacent road on the south side. This study used the potential of synthetic aperture radar (SAR) satellite for surface property changes that lies in backscattering characteristic to map the collapsed structure. The interferometric SAR technique can make a direct measurement of the decorrelation among different acquisition dates by integrating both amplitude and phase information. The damage proxy map (DPM) technique has been employed using four high-resolution Constellation of Small Satellites for Mediterranean basin Observation (COSMO-SkyMed) data spanning from 2020 to 2021 during ascending observation to analyze the collapse of the construction. DPM relies on the difference of pre- and co-event interferometric coherences to depict anomalous changes that indicate collapsed structure in the study area. The DPMs were displayed in a color scale that indicates an increasingly more significant ground surface change in the area covered by the pixels, depicting the collapsed structure. Therefore, the DPM technique with SAR data can be used for damage assessment with accurate and comprehensive detection after an event. In addition, we classify the amplitude information using support vector machine (SVM) and maximum likelihood classification algorithms. An investigation committee was formed to determine the cause of the collapse of the retaining wall and to suggest technical and institutional measures and alternatives to prevent similar incidents from reoccurring. The report from the committee revealed that the incident was caused by a combination of factors that were not carried out properly.

A Novel Approach to COVID-19 Diagnosis Based on Mel Spectrogram Features and Artificial Intelligence Techniques

  • Alfaidi, Aseel;Alshahrani, Abdullah;Aljohani, Maha
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.195-207
    • /
    • 2022
  • COVID-19 has remained one of the most serious health crises in recent history, resulting in the tragic loss of lives and significant economic impacts on the entire world. The difficulty of controlling COVID-19 poses a threat to the global health sector. Considering that Artificial Intelligence (AI) has contributed to improving research methods and solving problems facing diverse fields of study, AI algorithms have also proven effective in disease detection and early diagnosis. Specifically, acoustic features offer a promising prospect for the early detection of respiratory diseases. Motivated by these observations, this study conceptualized a speech-based diagnostic model to aid in COVID-19 diagnosis. The proposed methodology uses speech signals from confirmed positive and negative cases of COVID-19 to extract features through the pre-trained Visual Geometry Group (VGG-16) model based on Mel spectrogram images. This is used in addition to the K-means algorithm that determines effective features, followed by a Genetic Algorithm-Support Vector Machine (GA-SVM) classifier to classify cases. The experimental findings indicate the proposed methodology's capability to classify COVID-19 and NOT COVID-19 of varying ages and speaking different languages, as demonstrated in the simulations. The proposed methodology depends on deep features, followed by the dimension reduction technique for features to detect COVID-19. As a result, it produces better and more consistent performance than handcrafted features used in previous studies.

A Detailed Review on Recognition of Plant Disease Using Intelligent Image Retrieval Techniques

  • Gulbir Singh;Kuldeep Kumar Yogi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.77-90
    • /
    • 2023
  • Today, crops face many characteristics/diseases. Insect damage is one of the main characteristics/diseases. Insecticides are not always effective because they can be toxic to some birds. It will also disrupt the natural food chain for animals. A common practice of plant scientists is to visually assess plant damage (leaves, stems) due to disease based on the percentage of disease. Plants suffer from various diseases at any stage of their development. For farmers and agricultural professionals, disease management is a critical issue that requires immediate attention. It requires urgent diagnosis and preventive measures to maintain quality and minimize losses. Many researchers have provided plant disease detection techniques to support rapid disease diagnosis. In this review paper, we mainly focus on artificial intelligence (AI) technology, image processing technology (IP), deep learning technology (DL), vector machine (SVM) technology, the network Convergent neuronal (CNN) content Detailed description of the identification of different types of diseases in tomato and potato plants based on image retrieval technology (CBIR). It also includes the various types of diseases that typically exist in tomato and potato. Content-based Image Retrieval (CBIR) technologies should be used as a supplementary tool to enhance search accuracy by encouraging you to access collections of extra knowledge so that it can be useful. CBIR systems mainly use colour, form, and texture as core features, such that they work on the first level of the lowest level. This is the most sophisticated methods used to diagnose diseases of tomato plants.