• 제목/요약/키워드: support vector machine(SVM)

검색결과 1,254건 처리시간 0.035초

HOG 특징 기반 능동 소나 식별 기법 (Active Sonar Classification Algorithm based on HOG Feature)

  • 신현학;박재현;구본화;서익수;김태환;임준석;고한석;홍우영
    • 한국군사과학기술학회지
    • /
    • 제20권1호
    • /
    • pp.33-39
    • /
    • 2017
  • In this paper, an effective feature which is capable of classifying targets among the detections obtained from 2D range-bearing maps generated in active sonar environments is proposed. Most conventional approaches for target classification with the 2D maps have considered magnitude of peak and statistical features of the area surrounding the peak. To improve the classification performance, HOG(Histogram of Gradient) feature, which is popular for their robustness in the image textures analysis is applied. In order to classify the target signal, SVM(Support Vector Machine) method with reduced HOG feature by the PCA(Principal Component Analysis) algorithm is incorporated. The various simulations are conducted with the real clutter signal data and the synthesized target signal data. According to the simulated results, the proposed method considering HOG feature is claimed to be effective when classifying the active sonar target compared to the conventional methods.

스테레오 비전 기술을 이용한 도로 표지판의 3차원 추적 (Three Dimensional Tracking of Road Signs based on Stereo Vision Technique)

  • 최창원;최성인;박순용
    • 제어로봇시스템학회논문지
    • /
    • 제20권12호
    • /
    • pp.1259-1266
    • /
    • 2014
  • Road signs provide important safety information about road and traffic conditions to drivers. Road signs include not only common traffic signs but also warning information regarding unexpected obstacles and road constructions. Therefore, accurate detection and identification of road signs is one of the most important research topics related to safe driving. In this paper, we propose a 3-D vision technique to automatically detect and track road signs in a video sequence which is acquired from a stereo vision camera mounted on a vehicle. First, color information is used to initially detect the sign candidates. Second, the SVM (Support Vector Machine) is employed to determine true signs from the candidates. Once a road sign is detected in a video frame, it is continuously tracked from the next frame until it is disappeared. The 2-D position of a detected sign in the next frame is predicted by the 3-D motion of the vehicle. Here, the 3-D vehicle motion is acquired by using the 3-D pose information of the detected sign. Finally, the predicted 2-D position is corrected by template-matching of the scaled template of the detected sign within a window area around the predicted position. Experimental results show that the proposed method can detect and track many types of road signs successfully. Tracking comparisons with two different methods are shown.

글꼴 유사도 판단을 위한 Faster R-CNN 기반 한글 글꼴 획 요소 자동 추출 (Automatic Extraction of Hangul Stroke Element Using Faster R-CNN for Font Similarity)

  • 전자연;박동연;임서영;지영서;임순범
    • 한국멀티미디어학회논문지
    • /
    • 제23권8호
    • /
    • pp.953-964
    • /
    • 2020
  • Ever since media contents took over the world, the importance of typography has increased, and the influence of fonts has be n recognized. Nevertheless, the current Hangul font system is very poor and is provided passively, so it is practically impossible to understand and utilize all the shape characteristics of more than six thousand Hangul fonts. In this paper, the characteristics of Hangul font shapes were selected based on the Hangul structure of similar fonts. The stroke element detection training was performed by fine tuning Faster R-CNN Inception v2, one of the deep learning object detection models. We also propose a system that automatically extracts the stroke element characteristics from characters by introducing an automatic extraction algorithm. In comparison to the previous research which showed poor accuracy while using SVM(Support Vector Machine) and Sliding Window Algorithm, the proposed system in this paper has shown the result of 10 % accuracy to properly detect and extract stroke elements from various fonts. In conclusion, if the stroke element characteristics based on the Hangul structural information extracted through the system are used for similar classification, problems such as copyright will be solved in an era when typography's competitiveness becomes stronger, and an automated process will be provided to users for more convenience.

A Novel Hyperspectral Microscopic Imaging System for Evaluating Fresh Degree of Pork

  • Xu, Yi;Chen, Quansheng;Liu, Yan;Sun, Xin;Huang, Qiping;Ouyang, Qin;Zhao, Jiewen
    • 한국축산식품학회지
    • /
    • 제38권2호
    • /
    • pp.362-375
    • /
    • 2018
  • This study proposed a rapid microscopic examination method for pork freshness evaluation by using the self-assembled hyperspectral microscopic imaging (HMI) system with the help of feature extraction algorithm and pattern recognition methods. Pork samples were stored for different days ranging from 0 to 5 days and the freshness of samples was divided into three levels which were determined by total volatile basic nitrogen (TVB-N) content. Meanwhile, hyperspectral microscopic images of samples were acquired by HMI system and processed by the following steps for the further analysis. Firstly, characteristic hyperspectral microscopic images were extracted by using principal component analysis (PCA) and then texture features were selected based on the gray level co-occurrence matrix (GLCM). Next, features data were reduced dimensionality by fisher discriminant analysis (FDA) for further building classification model. Finally, compared with linear discriminant analysis (LDA) model and support vector machine (SVM) model, good back propagation artificial neural network (BP-ANN) model obtained the best freshness classification with a 100 % accuracy rating based on the extracted data. The results confirm that the fabricated HMI system combined with multivariate algorithms has ability to evaluate the fresh degree of pork accurately in the microscopic level, which plays an important role in animal food quality control.

EMD와 FFT를 이용한 동작 상상 EEG 분류 기법 (Motor Imagery EEG Classification Method using EMD and FFT)

  • 이다빛;이희재;이상국
    • 정보과학회 논문지
    • /
    • 제41권12호
    • /
    • pp.1050-1057
    • /
    • 2014
  • 뇌전도 기반의 뇌-컴퓨터 인터페이스는 향후 손 또는 발과 같은 신체를 대체하거나 사용자의 편의성을 제고하는 등의 다양한 목적으로 여러 산업에서 사용이 될 수 있는 기술이다. 본 논문에서는 경험 모드 분해와 고속푸리에 변환을 통해 동작 상상 뇌전도 신호를 분해하고 특징을 추출하는 방법을 제안한다. 뇌전도 신호 분류 과정은 다음과 같이 3단계로 구성된다. 신호 분해에서는 경험모드분해를 이용하여 뇌전도 신호에 대한 내재모드함수를 생성한다. 특징 추출에서는 파워 스펙트럼 밀도를 이용하여 생성된 내재모드함수의 주파수 대역을 확인한 뒤, 뮤파 대역을 포함하고 있는 내재모드함수에 고속푸리에 변환을 적용하여 움직임 상상에 대한 특징을 추출한다. 특징 분류에서는 서포트 벡터 머신을 사용하여 동작 상상 뇌전도 신호에 대한 특징을 분류하고, 10-교차검증을 통해 분류기의 일반화 성능을 추정한다. 제안하는 방법은 다른 방법들과 비교하여 84.50%의 분류 정확도를 보여주었다.

Bag of Visual Words Method based on PLSA and Chi-Square Model for Object Category

  • Zhao, Yongwei;Peng, Tianqiang;Li, Bicheng;Ke, Shengcai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권7호
    • /
    • pp.2633-2648
    • /
    • 2015
  • The problem of visual words' synonymy and ambiguity always exist in the conventional bag of visual words (BoVW) model based object category methods. Besides, the noisy visual words, so-called "visual stop-words" will degrade the semantic resolution of visual dictionary. In view of this, a novel bag of visual words method based on PLSA and chi-square model for object category is proposed. Firstly, Probabilistic Latent Semantic Analysis (PLSA) is used to analyze the semantic co-occurrence probability of visual words, infer the latent semantic topics in images, and get the latent topic distributions induced by the words. Secondly, the KL divergence is adopt to measure the semantic distance between visual words, which can get semantically related homoionym. Then, adaptive soft-assignment strategy is combined to realize the soft mapping between SIFT features and some homoionym. Finally, the chi-square model is introduced to eliminate the "visual stop-words" and reconstruct the visual vocabulary histograms. Moreover, SVM (Support Vector Machine) is applied to accomplish object classification. Experimental results indicated that the synonymy and ambiguity problems of visual words can be overcome effectively. The distinguish ability of visual semantic resolution as well as the object classification performance are substantially boosted compared with the traditional methods.

Plants Disease Phenotyping using Quinary Patterns as Texture Descriptor

  • Ahmad, Wakeel;Shah, S.M. Adnan;Irtaza, Aun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권8호
    • /
    • pp.3312-3327
    • /
    • 2020
  • Plant diseases are a significant yield and quality constraint for farmers around the world due to their severe impact on agricultural productivity. Such losses can have a substantial impact on the economy which causes a reduction in farmer's income and higher prices for consumers. Further, it may also result in a severe shortage of food ensuing violent hunger and starvation, especially, in less-developed countries where access to disease prevention methods is limited. This research presents an investigation of Directional Local Quinary Patterns (DLQP) as a feature descriptor for plants leaf disease detection and Support Vector Machine (SVM) as a classifier. The DLQP as a feature descriptor is specifically the first time being used for disease detection in horticulture. DLQP provides directional edge information attending the reference pixel with its neighboring pixel value by involving computation of their grey-level difference based on quinary value (-2, -1, 0, 1, 2) in 0°, 45°, 90°, and 135° directions of selected window of plant leaf image. To assess the robustness of DLQP as a texture descriptor we used a research-oriented Plant Village dataset of Tomato plant (3,900 leaf images) comprising of 6 diseased classes, Potato plant (1,526 leaf images) and Apple plant (2,600 leaf images) comprising of 3 diseased classes. The accuracies of 95.6%, 96.2% and 97.8% for the above-mentioned crops, respectively, were achieved which are higher in comparison with classification on the same dataset using other standard feature descriptors like Local Binary Pattern (LBP) and Local Ternary Patterns (LTP). Further, the effectiveness of the proposed method is proven by comparing it with existing algorithms for plant disease phenotyping.

Prediction Model for the Cellular Immortalization and Transformation Potentials of Cell Substrates

  • Lee, Min-Su;Matthews Clayton A.;Chae Min-Ju;Choi, Jung-Yun;Sohn Yeo-Won;Kim, Min-Jung;Lee, Su-Jae;Park, Woong-Yang
    • Genomics & Informatics
    • /
    • 제4권4호
    • /
    • pp.161-166
    • /
    • 2006
  • The establishment of DNA microarray technology has enabled high-throughput analysis and molecular profiling of various types of cancers. By using the gene expression data from microarray analysis we are able to investigate diagnostic applications at the molecular level. The most important step in the application of microarray technology to cancer diagnostics is the selection of specific markers from gene expression profiles. In order to select markers of Immortalization and transformation we used c-myc and $H-ras^{V12}$ oncogene-transfected NIH3T3 cells as our model system. We have identified 8751 differentially expressed genes in the immortalization/transformation model by multivariate permutation F-test (95% confidence, FDR<0.01). Using the support vector machine algorithm, we selected 13 discriminative genes which could be used to predict immortalization and transformation with perfect accuracy. We assayed $H-ras^{V12}$-transfected 'transformed' cells to validate our immortalization/transformation dassification system. The selected molecular markers generated valuable additional information for tumor diagnosis, prognosis and therapy development.

A SNP Harvester Analysis to Better Detect SNPs of CCDC158 Gene That Are Associated with Carcass Quality Traits in Hanwoo

  • Lee, Jea-Young;Lee, Jong-Hyeong;Yeo, Jung-Sou;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권6호
    • /
    • pp.766-771
    • /
    • 2013
  • The purpose of this study was to investigate interaction effects of genes using a Harvester method. A sample of Korean cattle, Hanwoo (n = 476) was chosen from the National Livestock Research Institute of Korea that were sired by 50 Korean proven bulls. The steers were born between the spring of 1998 and the autumn of 2002 and reared under a progeny-testing program at the Daekwanryeong and Namwon branches of NLRI. The steers were slaughtered at approximately 24 months of age and carcass quality traits were measured. A SNP Harvester method was applied with a support vector machine (SVM) to detect significant SNPs in the CCDC158 gene and interaction effects between the SNPs that were associated with average daily gains, cold carcass weight, longissimus dorsi muscle area, and marbling scores. The statistical significance of the major SNP combinations was evaluated with $x^2$-statistics. The genotype combinations of three SNPs, g.34425+102 A>T(AA), g.4102636T>G(GT), and g.11614-19G>T(GG) had a greater effect than the rest of SNP combinations, e.g. 0.82 vs. 0.75 kg, 343 vs. 314 kg, 80.4 vs $74.7cm^2$, and 7.35 vs. 5.01, for the four respective traits (p<0.001). Also, the estimates were greater compared with single SNPs analyzed (the greatest estimates were 0.76 kg, 320 kg, $75.5cm^2$, and 5.31, respectively). This result suggests that the SNP Harvester method is a good option when multiple SNPs and interaction effects are tested. The significant SNPs could be applied to improve meat quality of Hanwoo via marker-assisted selection.

Energy analysis-based core drilling method for the prediction of rock uniaxial compressive strength

  • Qi, Wang;Shuo, Xu;Ke, Gao Hong;Peng, Zhang;Bei, Jiang;Hong, Liu Bo
    • Geomechanics and Engineering
    • /
    • 제23권1호
    • /
    • pp.61-69
    • /
    • 2020
  • The uniaxial compressive strength (UCS) of rock is a basic parameter in underground engineering design. The disadvantages of this commonly employed laboratory testing method are untimely testing, difficulty in performing core testing of broken rock mass and long and complicated onsite testing processes. Therefore, the development of a fast and simple in situ rock UCS testing method for field use is urgent. In this study, a multi-function digital rock drilling and testing system and a digital core bit dedicated to the system are independently developed and employed in digital drilling tests on rock specimens with different strengths. The energy analysis is performed during rock cutting to estimate the energy consumed by the drill bit to remove a unit volume of rock. Two quantitative relationship models of energy analysis-based core drilling parameters (ECD) and rock UCS (ECD-UCS models) are established in this manuscript by the methods of regression analysis and support vector machine (SVM). The predictive abilities of the two models are comparatively analysed. The results show that the mean value of relative difference between the predicted rock UCS values and the UCS values measured by the laboratory uniaxial compression test in the prediction set are 3.76 MPa and 4.30 MPa, respectively, and the standard deviations are 2.08 MPa and 4.14 MPa, respectively. The regression analysis-based ECD-UCS model has a more stable predictive ability. The energy analysis-based rock drilling method for the prediction of UCS is proposed. This method realized the quick and convenient in situ test of rock UCS.