• Title/Summary/Keyword: supination

Search Result 103, Processing Time 0.024 seconds

Treatment of Ankle Lateral Malleolar Fractures Accompanying Osteoporosis using Lag Screw (골다공증과 동반된 족관절 외과 골절의 지연나사를 이용한 치료)

  • Lee, Jun-Young;Lee, Kwang-Chul
    • Journal of Korean Foot and Ankle Society
    • /
    • v.10 no.2
    • /
    • pp.207-212
    • /
    • 2006
  • Purpose: To evaluate the results of ankle lateral malleolar fractures classified as Danis-Weber type B accompanying osteoporosis that were treated with lag screw. Materials and Methods: 15 cases of Danis-Weber type B ankle lateral malleolar fractures that had T score of less than -2.5 in BMD(bone mineral density) test were selected from June 2003 to December 2005. 10 cases were males and 5 cases were females with mean age of 59 years. The main injury mechanism was supination and external rotation. Mean follow-up period was 16 months. Clinical and radiologic evaluation was done according to Meyer and Kumler's criteria. Results: All cases showed satisfying result and mean radiologic bone union period was 3 months. Anatomic reduction and bone union was acquired in all cases without complications including wound infection, skin necrosis, delayed union and nonunion Conclusions: Lag screw fixation seem to be excellent treatment of Danis-Weber type B lateral malleolar fractures with osteoporosis as it can minimize soft tissue injury and enable anatomic reduction with firm fixation.

  • PDF

Effect of Wrist Resistance Training on Motor Control and Strength in Young Males

  • Kim, You-Sin;Kim, Dae-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.3
    • /
    • pp.309-315
    • /
    • 2014
  • The aim of the present study was to investigate the effects of 6-week wrist resistance training on wrist torque control. Nineteen subjects were randomly assigned to either the wrist training group (n=9) or the control group (n=10). The training group performed wrist exercises for six directions (flexion, extension, pronation, supination, radial deviation, and ulnar deviation) while the control group did not. Testing for the isometric torque control error, one-repetition maximum (1-RM) strength, and isokinetic maximum torque (angular velocity of $60^{\circ}/s$ wrist movements) were conducted before and after six weeks of resistance training and after every two-week interval of training. The wrist training group showed significant decreases in isometric torque control error in all six directions after the 2-week resistance training, while the control group did not show significant increase or decrease. The training group showed significant increases in the maximum strength in all six directions assessed by 1-RM strength and isokinetic strength tests after the 4-week resistance training, while the control group did not show any statistically significant changes. This study shows that motor control ability significantly improves within the first two weeks of resistance training, while the wrist strength significantly improves within the first four weeks of resistance training in wrist training group compared to the control.

Effects of Immersive Virtual Reality Intervention on Upper Extremity Function in Post-Stroke Patients (몰입형 가상현실 프로그램 Rapael Smart Glove가 뇌졸중 환자의 상지기능에 미치는 영향)

  • Bae, Wonjin;Kam, Kyungyoon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.5 no.3
    • /
    • pp.1-9
    • /
    • 2017
  • Purpose: The purpose of this study was to investigate the effects of an immersive, virtual reality-based exercise program on range of motion and dexterity in the upper extremities of stroke patients. Methods: Fifteen patients with hemiparesis after stroke participated in this study. The participants participated in Rapael Semart GloveTM, an immersive, virtual reality-based exercise program, performed for 30 minutes-, 3 times per week for 4 weeks. The Rapael Smart GloveTM program and a Box and Block Test (BBT) were used to measure range of motion and to assess dexterity, respectively, pre-and post-intervention. Results: Range of motion in pronation and supination of the forearm and flexion, extension, and ulnar deviation of the wrist improved after the intervention. Dexterity measured by BBT also improved. However, range of motion in flexion and extension of the fingers and radial deviation of the wrist did not improve. Conclusion: This study presents the effects of an immersive, virtual reality-based exercise program on hand function. In the future, a study comparing an immersive, virtual reality- based exercise program to other upper-extremity interventions for stroke patients should be conducted. A study about the effects of an immersive virtual reality program on activities of daily living is also needed.

Results of radial head resection after Mason type 3 or 4 fracture of the elbow

  • Mebouinz, Ferdinand Nyankoue;Kasse, Amadou;Sy, Mouhamadou Habib
    • Clinics in Shoulder and Elbow
    • /
    • v.23 no.3
    • /
    • pp.131-135
    • /
    • 2020
  • Background: Resection of the radial head is a surgical indication for comminuted radial head fracture in which internal fixation is inaccessible. Some complications from the surgery can alter the function of the patient's elbow. The objective of this study was to assess functional outcome of the elbow after resection of the radial head. Methods: A retrospective longitudinal study was performed with patients who underwent radial head resection between 2008 and 2018. Elbow function was assessed by the Mayo Elbow Performance Index (MEPI) for 11 patients comprising three women and eight men. The mean follow-up was 47.6 months. The mean age was 41±10.3 years. Results: Nine patients had a stable and painless elbow. The mean extension-flexion arc was 97.73°±16.03°. The mean values of pronation and supination were 76.8° and 74.5°, respectively. The mean MEPI score was 83.2 points, and restoration of overall function was achieved in 81% of the cases. Poor function was noted in one in 10 that presented with a terrible triad. Conclusions: Resection of the radial head restored elbow functionality at a rate of 81%, which was a good outcome for patients.

The Effect of Lower Muscle Activities on the Sub talar Joint Mobilization and Active Exercise of Ankle Shape (발의 형태에 따른 거골하 관절 가동술과 능동운동이 하퇴 근활성도에 미치는 영향)

  • Hyong, In-Hyouk;Bae, Sung-Soo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.3 no.3
    • /
    • pp.151-160
    • /
    • 2008
  • Purpose : The purpose of this study is to know the muscle activation after sub-talar joint mobilition and active exercise, and the low leg muscle activity through the well-balanced interaction of ankle joint around muscle. Methods : For this study 61 experimental subjects are divided into 24 people of supination foot group, pronation foot group 17 people of, 20 people of control group through navicular drop test. Surface EMG was used in order to measure the muscle activities. following is the result of the data analysis about each experiment that has been carried on a week, 2 weeks, 3 weeks, 4 weeks before, and even comparing with pre-experimental state. Results : In electromyogram study, the higher muscle activation there was before the experiment, the more muscle activation increase there was after the experiment in Tibialis Anterior, Peroneus Longus, Peroneus Brevis.(p<.05). Conclusion : This study shows the balanced activation of foot and ankle-around muscle. It shows that foot shape affects the balanced activation recovery of lower leg muscles.

  • PDF

The Effect of Arm Movements in the during Standing Position on Lower Limb Global Synkinesis and Balance in Stroke Patients

  • Moon, YoungJun;Jeong, DaeKeun;Kang, Jeongil
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.10 no.3
    • /
    • pp.1849-1855
    • /
    • 2019
  • Background: Stroke patients require arm movement exercising for various stimulations in standing position for various stimulations rather than in a sitting position because they require integrated skillful movements, such as stretching, holding, and controlling. Objective: This study was conducted to provide foundational clinical data about lower limb global synkinesis in stroke patients using arm movements in a standing position. Design: Randomized controlled trial. Methods: The subjects were divided into a control group (n = 10) and an experimental group (n = 10), and a pre-test was conducted to evaluate leg global synkinesis (GS) and balance. Intervention method is stretching an arm to hold a ball, repeating supination and pronation of the hand only while maintaining the arm extended as much as possible, repeating shoulder abduction and adduction while holding the pegboard. This was followed by a three-week intervention during which re-measurement was conducted in the same way as was done for the pre-test. Results: The control group showed a significant difference in GS and balance during plantar flexion (p<.05), and the experimental group showed a significant difference in GS and balance during all movements (p<.05, p<.01, respectively). There was a significant difference in GS and balance between the two groups during dorsiflexion (p<.05, p<.01, respectively). Conclusion: The findings demonstrate that human arm movements in a standing position can reduce GS in the affected limb, and balance can be improved by stimulating the surrounding tissues of the affected limb and changing them positively.

Effects of a Bilateral upper Limb Training Program Using a Visual Feedback Method on Individuals with Chronic Stroke: A Pilot Clinical Trial

  • Kang, Dongheon;Park, Jiyoung;Choi, Chisun;Eun, Seon-Deok
    • International Journal of Contents
    • /
    • v.17 no.2
    • /
    • pp.20-31
    • /
    • 2021
  • This study aimed to pilot test a newly developed bilateral upper limb rehabilitation training program for improving the upper limb function of individuals with chronic stroke using a visual feedback method. The double-group pretest-posttest design pilot study included 10 individuals with chronic stroke (age >50 years). The intervention (four weekly meetings) consisted of five upper limb training protocols (wrist extension; forearm supination and pronation; elbow extension and shoulder flexion; weight-bearing shift; and shoulder, elbow, and wrist complex movements). Upper limb movement function recovery was assessed with the FuglMeyer Assessment of the Upper Extremity, the Wolf Motor Function Test, the Trunk Control Test, the modified Ashworth Scale, and the visual analog scale at baseline, immediately after, and four weeks after the intervention. The Fatigue Severity Scale was also employed. The Fugl-Meyer Assessment of the Upper Extremity and Wolf Motor Function Test showed significant improvement in upper limb motor function. The Trunk Control Test results increased slightly, and the modified Ashworth Scale decreased slightly, without statistical significance. The visual analog scale scores showed a significant decrease and the Fatigue Severity Scale scores were moderate or low. The bilateral upper limb training program using the visual feedback method could result in slight upper limb function improvements in individuals with chronic stroke.

The elbow is the load-bearing joint during arm swing

  • Bokku Kang;Gu-Hee Jung;Erica Kholinne;In-Ho Jeon;Jae-Man Kwak
    • Clinics in Shoulder and Elbow
    • /
    • v.26 no.2
    • /
    • pp.126-130
    • /
    • 2023
  • Background: Arm swing plays a role in gait by accommodating forward movement through trunk balance. This study evaluates the biomechanical characteristics of arm swing during gait. Methods: The study performed computational musculoskeletal modeling based on motion tracking in 15 participants without musculoskeletal or gait disorder. A three-dimensional (3D) motion tracking system using three Azure Kinect (Microsoft) modules was used to obtain information in the 3D location of shoulder and elbow joints. Computational modeling using AnyBody Modeling System was performed to calculate the joint moment and range of motion (ROM) during arm swing. Results: Mean ROM of the dominant elbow was 29.7°±10.2° and 14.2°±3.2° in flexion-extension and pronation-supination, respectively. Mean joint moment of the dominant elbow was 56.4±12.7 Nm, 25.6±5.2 Nm, and 19.8±4.6 Nm in flexion-extension, rotation, and abduction-adduction, respectively. Conclusions: The elbow bears the load created by gravity and muscle contracture in dynamic arm swing movement.

Preliminary Study on the Comparison of Calcaneus Taping and Arch Taping Methods for Flexible Flatfoot Subjects

  • Jinteak Kim;Byeongsoo Kim;Jongduk Choi
    • Physical Therapy Korea
    • /
    • v.30 no.4
    • /
    • pp.281-287
    • /
    • 2023
  • Background: The flexible flatfoot is characterized by a flattening of the foot arch due to excessive bodyweight. The use of shoe insoles or taping methods has been identified as effective in realigning the navicular or calcaneus bones and addressing supination in pronated feet. Objects: This study aimed to analyze the difference between the arch taping attachment method, introduced in a previous study, and a novel taping method designed to provide support to the inner aspect of the heel bone in cases of flexible flatfoot. Methods: A navicular drop test was performed to discriminate flexible flatfoot. To analyze the differences in pressure distribution during walking for each taping method, the subjects underwent testing in the barefoot state with no attachments. The procedure included a sequence of arch taping and heel taping. Subsequent analysis of pressure distribution during walking utilized the GaitRite® system (GAITRite Gold, CIR Systems Inc.). Results: Arch taping and calcaneus taping significantly reduced the integrated pressure over time and peak pressure on the medial side of the midfoot for both feet compared to the barefoot state. Conclusion: The findings of this study suggest that supporting the inside of the heel through calcaneus taping, without direct stimulation to the longitudinal arch and navicular bone, is an effective intervention for flexible flatfoot.

A study on bio-signal process for prosthesis arm control (인공의수의 능동 제어를 위한 생체 신호 처리에 관한 연구)

  • Ahn, Young-Myung;Yoo, Jae-Myung
    • 전자공학회논문지 IE
    • /
    • v.43 no.4
    • /
    • pp.28-36
    • /
    • 2006
  • In this paper, an algorithm to classify the 4 motions of arm and a control system to position control the prosthesis are studied. To classify the 4 motions, we use flex sensors which is electrical resistance type sensor that can measure warp of muscle. The flex sensors are attached to the biceps brchii muscle and coracobrachialis muscle and the sensor signals are passed the sensing system. 4 motion of the forearm - flexion and extension, the pronation and supination are classified from this. Also position of forearm is measured from the classified signals. Finally, A two D.O.F prosthesis arm with RC servo-motor is designed to verify the validity of the algorithm. At this time, fuzzy controller is used to reduce the position error by rotary inertia and noise. From the experiment, the position error had occurred within about 5 degree.