• Title/Summary/Keyword: supersonic flow

Search Result 801, Processing Time 0.025 seconds

Computational Study of the Axisymmetric, Supersonic Ejector-Diffuser Systems

  • Kim, Heuy-Dong;Lee, Young-Ki;Seo, Tae-Won;Raghunathan, Srinivasan
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.520-524
    • /
    • 2000
  • A ejector system is one of the fluid machinery, which has been mainly used as an exhaust pump or a vacuum pump. The ejector system has often been pointed out to have only a limited efficiency because it is driven by pure shear action and the mixing action between primary and secondary streams. In the present work, numerical simulations were conducted to investigate the effects of the geometry and the mass flow ratio of supersonic ejector-diffuser systems on their mixing performance. A fully implicit finite volume scheme was applied to solve the axisymmetric Navier-Stokes equations, and the standard ${\kappa}-{\varepsilon}$ turbulence model was used to close the governing equations. The flow fields of the supersonic ejector-diffuser systems were investigated by changing the ejector throat area ratio and the mass flow ratio. The existence of the second throat strongly affected the shock wave structure inside the mixing tube as well as the spreading of the under-expanded jet discharging from the primary nozzle, and served to enhance the mixing performance.

  • PDF

NUMERICAL ANALYSIS OF THREE DIMENSIONAL SUPERSONIC CAVITY FLOW FOR THE VARIATION OF CAVITY SPANWISE RATIO (공동의 폭 변화에 따른 3차원 초음속 공동 유동연구)

  • Woo, C.H.;Kim, J.S.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.62-66
    • /
    • 2006
  • High-speed flight vehicle have various cavities. The supersonic cavity flow is complicated due to vortices, flow separation, reattachment, shock waves and expansion waves. The general cavity flow phenomena includes the formation and dissipation of vortices, which induce oscillation and noise. The oscillation and noise greatly affect flow control, chemical reaction, and heat transfer processes. The supersonic cavity flow with high Reynolds number is characterized by the pressure oscillation due to turbulent shear layer, cavity geometry, and resonance phenomenon based on external flow conditions. The resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, we performed numerical analysis of cavities by applying the unsteady, compressible three dimensional Reynolds-Averaged Navier-Stokes(RANS) equations with the ${\kappa}-{\omega}$ turbulence model. The cavity model used for numerical calculation had a depth(D) of 15mm cavity aspect ratio (L/D) of 3, width to spanwise ratio(W/D) of 1.0 to 5.0. Based on the PSD(Power Spectral Density) and CSD(Cross Spectral Density) analysis of the pressure variation, the dominant frequency was analyzed and compared with the results of Rossiter's Eq.

Effect of flow bleed on shock wave/boundary layer interaction (유동의 흡입이 충격파/경계층의 간섭현상에 미치는 영향)

  • Kim, Heuy-Dong;Matsus, Kazuyasu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1273-1283
    • /
    • 1997
  • Experiments of shock wave/turbulent boundary layer interaction were conducted by using a supersonic wind tunnel. Nominal Mach number was varied in the range of 1.6 to 3.0 by means of different nozzles. The objective of the present study is to investigate the effects of boundary layer flow bleed on the interaction flow field in a straight tube. Two-dimensional slits were installed on the tube walls to bleed the turbulent boundary layer flows. The bleed flows were measured by an orifice. The ratio of the bleed mass flow to main mass flow was controlled within the range of 11 per cent. The wall pressures were measured by the flush mounted transducers and Schlieren optical observations were made for almost all of the experiments. The results show that the boundary layer flow bleed reduces the multiple shock waves to a strong normal shock wave. For the design Mach number of 1.6, it was found that the normal shock wave at the position of the silt was resulted from the main flow choking due to the suction of the boundary layer flow.

Study on Heat Transfer around a Circular Jet Ejected into a Supersonic Flow (초음속 유동내에 분사되는 원형 제트 주위에서의 열전달 연구)

  • Yi, Jong-Ju;Yu, Man-Sun;Cho, Hyung-Hee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.353-356
    • /
    • 2006
  • Convective heat transfer coefficient was measured around a secondary jet ejected into the supersonic flow field. Wall temperature distribution was measured on the surface, which the constant heat flux condition is applied. According to jet to freestream momentum ratio, the secondary flow was penetrated into the supersonic flow field. During the test, two dimensional thermal image of a wall temperature is taken by an infra-red camera. Experiments were performed under the testing condition of freestream Mach number of about 3, stagnation pressure of 630 kPa and Reynolds number of $3.0{\times}10^6$.

  • PDF

A Study on the Flow Characteristics of Supersonic Microjets (초음속 마이크로제트 유동특성에 관한 연구)

  • Shin, Choon-Sik;Kim, Heuy-Dong;Setoguchi, Toshiaki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.492-495
    • /
    • 2009
  • Supersonic microjets acquire considerable research interest from a fundamental fluid dynamics perspective, in part because the combination of highly compressible flow at low-to-moderate Reynolds number is not very common, and in part due to the complex nature of the flow itself. In addition, microjets have a great variety engineering applications such as micro-propulsion, MEMS (Micro-Electro Mechanical Systems) components, microjet actuators and fine particle deposition and removal. Numerical simulations have been carried out at moderate nozzle pressure ratios and for different nozzle exit diameters to investigate and to understand in-depth of aerodynamic characteristics of supersonic microjets.

  • PDF

Numerical Analysis of Flow Characteristics around 3D Supersonic Inlet at Various Angle of Attack (받음각이 있는 3차원 초음속 흡입구 주위의 유동진동 해석)

  • Kim, J.;Hong, W.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.218-224
    • /
    • 2011
  • A supersonic inlet at angle of attack has anti-symmetric pressure distribution, and it can make flow instability and structural problem. In this study, numerical analysis of three-dimensional inviscid flow was conducted under various throttle ratio and angle of attack conditions. Throttle ratio was defined as the ratio of the exit area to the smallest cross section area at inlet, and the ratio is controlled from 0 to 2.42. At various angle of attack, the characteristics of steady and unsteady flow around supersonic inlet is observed under different throttling ratios. From these results, pressure recovery curves and pressure history curves were plotted by post processing. Using pressure history data, FFT analysis is also carried out. Through these processes, it shows the tendency of pressure distribution anti-symmetricity and changing dominant frequency as increasing angle of attack.

  • PDF

The interaction between helium flow within supersonic boundary layer and oblique shock waves

  • Kwak, Sang-Hyun;Iwahori, Yoshiki;Igarashi, Sakie;Obata, Sigeo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.75-78
    • /
    • 2004
  • Various jet engines (Turbine engine family and RAM Jet engine) have been developed for high speed aircrafts. but their application to hypersonic flight is restricted by principle problems such as increase of total pressure loss and thermal stress. Therefore, the development of next generation propulsion system for hypersonic aircraft is a very important subject in the aerospace engineering field, SCRAM Jet engine based on a key technology, Supersonic Combustion. is supposed as the best choice for the hypersonic flight. Since Supersonic Combustion requires both rapid ignition and stable flame holding within supersonic air stream, much attention have to be given on the mixing state between air stream and fuel flow. However. the wider diffusion of fuel is expected with less total pressure loss in the supersonic air stream. So. in this study the direction of fuel injection is inclined 30 degree to downstream and the total pressure of jet is controlled for lower penetration height than thickness of boundary layer. Under these flow configuration both streams, fuel and supersonic air stream, would not mix enough. To spread fuel wider into supersonic air an aerodynamic force, baroclinic torque, is adopted. Baroclinic torque is generated by a spatial misalignment between pressure gradient (shock wave plane) and density gradient (mixing layer). A wedge is installed in downstream of injector orifice to induce an oblique shock. The schlieren optical visualization from side transparent wall and the total pressure measurement at exit cross section of combustor estimate how mixing is enhanced by the incidence of shock wave into supersonic boundary layer composed by fuel and air. In this study non-combustionable helium gas is injected with total pressure 0.66㎫ instead of flammable fuel to clarify mixing process. Mach number 1.8. total pressure O.5㎫, total temperature 288K are set up for supersonic air stream.

  • PDF

A Comparison of the Effect of Tabs-Direction and Surface Roughness of Nozzle Surface on Supersonic Jet Flowfields (탭의 방향과 노즐내부 표면 거칠기가 초음속제트 유동장에 미치는 영향의 비교에 관한 연구)

  • Jin, Won-Jin;Cho, Chang-Kwun;Lee, Yeol
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.525-530
    • /
    • 2000
  • The effects of vortex generators, in the form of small tabs projecting into the flow at the axisymmetric supersonic nozzle exit and triangular thin tapes attached on the inner surface at the nozzle exit, on the characterixtics of supersonic mixing enhancements are experimentally investigated. Delta-shaped tabs as small as 1% of the nozzle exit area produce strong counter-rotating vortices, and is found to produce significant effects on the jet flowfield downstream of the nozzle. The effects is larger on the under-expanded cases than over- and perfect-expanded cases. Nozzle inner surface roughness also can do a role of centerline pressure decay for highly under-expanded jet cases. The effects of the angle of tabs with respect to flow direction are also investigated.

  • PDF

The Study on Cavity Flow in Supersonic flow field (초음속 유동장에 놓인 공동 유동에 대한 연구)

  • Yoon Y. H.;Hong S. K.;Kwon K. B.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.139-143
    • /
    • 2003
  • In this study the numerical analyses on cavity flow in supersonic flow field are conducted. According to the length-to-depth ratio of cavity, the shear layer is changed, consequently influencing on vortex structure inside the cavity. Especially in case the fluid flow outside cavity impinges inside the cavity, the oscillation of the cavity flow is identified. Another result is that though the cavity flow shows the unsteadiness, characteristics of cavity flow can be represented by pressure coefficients converged.

  • PDF