• Title/Summary/Keyword: superior colliculus

Search Result 16, Processing Time 0.028 seconds

Distribution of Calretinin in the Superficial Layers of the Mouse Superior Colliculus: Effect of Monocular Enuclection

  • Yang, Hye-Won;Jeon-Jeon, Chang-Jin
    • Animal cells and systems
    • /
    • v.2 no.3
    • /
    • pp.389-393
    • /
    • 1998
  • We localized a calcium-binding protein, calretinin, in the superior colliculus of the mouse and studied the distribution and effect of eye enucleation on the distribution of this protein. Calretinin was localized with immunocyto-chemistry. A dense plexus of anti-calretinin-labeled fibers was found within the superficial layers. The highest density was found in the deep superficial gray layer. Monocular enucleation produced an almost complete reduction of calretinin-immunoreactive fibers in the superficial layers of the superior colliculus contralateral to the enucleation. Furthermore, many calretinin-labeled cells appeared in the contralateral superior colliculus. These newly appeared neurons had small oval or round cell bodies. The results demonstrate that calretinin identify unique neuronal sublaminar organizations in the superior colliculus of the mouse. They also suggest that the retinal projection may control in part the content of calretinin in some neurons in the superficial layers of the mouse superior colliculus.

  • PDF

Calretinin-Containing Neurons in the Deeper Layers of the Hamster Superior Colliculus (햄스터 상구의 deeper layers에서 calretinin이 함유 신경세포)

  • Kim, Ye-Eun;Choi, Jae-Sik;Kim, Hye-Hyun;Yeo, Jin-Yeon;Jeon, Chang-Jin
    • Journal of Life Science
    • /
    • v.16 no.5
    • /
    • pp.750-758
    • /
    • 2006
  • Calcium-binding protein calretinin is thought to play important roles in calcium buffering. Recently, we reported on the distribution, morphology of calretinin-immunoreactive (IR) neurons and the effects of eye enucleation on the immunoreactivity of calretinin in the superficial layers of the hamster superior colliculus (SC). In the present study, we describe the distributions and types of labeled cells and effects of enucleation in the deeper layers by immunocytochemistry. We also compare this labeling to that of GABA, the major inhibitory neurotransmitter in the central nervous system. In contrast to the superficial layers, the deeper layers contained many calretinin-IR neurons which formed two tiers. The first tier, which was very distinctive, was found within the intermediate gray layer. The second tier was found in the deep gray layer. Labeled neurons varied dramatically in morphology and included vertical fusiform, stellate, round/oval, and horizontal neurons. In contrast to the superficial layers, enucleation appeared to have no effect on the distribution of calretinin immunoreactivity in the deeper layers. Two-color immunofluorescence revealed that none of calretinin-IR neurons were labeled with an antibody to GABA. The present results demonstrate that calretinin identifies unique neuronal sublaminar organizations in the hamster SC. The present results also demonstrate that none of the calretinin-IR neurons in the hamster SC is GABAergic interneurons. As many calretinin-IR cells are GABAergic interneurons in most other brain areas, this phenomenon in hamster SC is exceptional.

Immunoreactivity of Calcium-Binding Proteins in the Central Auditory Nervous System of Aged Rats

  • Hong, Seok-Min;Chung, Seung-Young;Park, Moon-Sun;Huh, Young-Buhm;Park, Moon-Suh;Yeo, Seung-Gun
    • Journal of Korean Neurosurgical Society
    • /
    • v.45 no.4
    • /
    • pp.231-235
    • /
    • 2009
  • Objective : While many factors contribute to aging, changes in calcium homeostasis and calcium related neuronal processes are likely to be important. High intracellular calcium is toxic to cells and alterations in calcium homeostasis are associated with changes in calcium-binding proteins, which confine free $Ca^{2+}$. We therefore assayed the expression of the calcium binding proteins calretinin and calbindin in the central auditory nervous system of rats. Methods : Using antibodies to calretinin and calbindin, we assayed their expression in the cochlear nucleus, superior olivary nucleus, inferior colliculus, medial geniculate body and auditory cortex of young (4 months old) and aged (24 months old) rats. Results : Calretinin and calbindin staining intensity in neurons of the cochlear nucleus was significantly higher in aged than in young rats (p<0.05) The number and staining intensity of calretinin-positive neurons in the inferior colliculus, and of calbindin-positive neurons in the superior olivary nucleus were greater in aged than in young rats (p<0.05). Conclusion : These results suggest that auditory processing is altered during aging, which may be due to increased intracellular $Ca^{2+}$ concentration, consequently leading to increased immunoreactivity toward calcium-binding proteins.

Distribution and Morphology of Calretinin-Immunoreactive Neurons in the Intermediate and Deep Layers of Cat Superior Colliculus

  • Jeon, Chang-Jin;Sung, Jin-Young;Hong, Soo-Kyung
    • Animal cells and systems
    • /
    • v.7 no.2
    • /
    • pp.151-157
    • /
    • 2003
  • Calretinin is thought to play roles in calcium buttering. Its site of expression has been extensively studied in the central nervous system. We previously reported (Hong et at.,2002, Neurosci. Res.,44: 325-335) calretinin expression in the superficial layers of the cat superior colliculus (SC). In the present study, we studied the distribution of calretinin in the intermediate and deep layers by immunocytochemistry. We found striking differences in calretinin immunoreactivity among the superficial, intermediate, and deep layers. In contrast to the superficial layers, the intermediate and deep layers contained many calretinin-immunoreactive (IR) neurons. They formed two laminar tiers. The first tier, which was very distinctive, was found within the upper intermediate gray layers and formed clusters of labeled neurons in many sections. The second tier of calretinin-IR neurons was found in the deep gray layer. However, the second tier was not distinctive compared to the first tier and the labeled neurons did not form any clusters. Calretinin-IR neurons in the intermediate and deep layers varied dramatically in morphology and included vortical fusiform, pyriform, and stellate neurons. Neurons with varicose dendrites were also labeled. Most of the labeled neurons were small to medium in size. Enucleation appeared to have no effect on the distribution of calretinin immunoreactivity in the contralateral intermediate and deep layers of the SC. The results indicate that calretinin is present in various neurons, at different locations. These results should be applicable for better understanding of the functional organization of the SC.

Immunohistochemical localization of PLC in rat brain after chronic ECS

  • Hey suk Ihm;You, Je-Kyung;Ryu, Jae-Ryun;Shin, Chan-Young;Ko, Kwang-Ho
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.197-197
    • /
    • 1998
  • Chronic electroconvulsive shock(ECS) was shown to Increase phosphatidylinositol-4,5-bisphosphate(PIP$_2$) breakdown and the activity of PLC with the accumulation of inositol-1,4,5-triphosphate(IP3). The purpose of the present study was to determine the effect of ECS on the expression of phospholipase C(PLC) isotypes in rat brain. Two groups of animals were prepared: sham and ECS treated groups. Rats in ECS treated groups received maximal ECS(70mA, 0.5second, 60㎐) by constant current stimulator through ear-clip to induce tonic extension seizures for 12 consecutive days. The expression of PLC isotypes in rat brain was determined by immunohistochemical procedure using sagital section of rat brain. The immunoreactivity of PLC${\beta}$1 was observed in corpus striatum, hippocampus, thalamus and that of PLC${\gamma}$1 in corpus striatum, hippocampus, thalamus, frontal cortex, parietooccipital cortex, limbic forebrain, pons, medulla, superior colliculus, inferior colliculus, rest of midbrain. The amount of PLC was analyzed by Western blot using antibodies against PLC${\beta}$1 and PLC${\gamma}$1. Chronic ECS reduced the immunoreactivity of PLC${\beta}$1 in corpus striatum, hippocampus, thalamus but had little effect on PLC${\gamma}$1. To quantify this change, quantitative Western blot using antibodies against PLC${\beta}$1 and PLC${\gamma}$1 was conducted. The immunoreactivity of PLC${\beta}$1 in ECS treated rat whole brain was decreased by 40 % in cytosolic fraction and 26 % in membrane fraction. This different effect of ECS on PLC isotypes may results from the difference of their activation mechanisms and the different effects of ECS on them. The results from the present study suggest that chronic ECS primalily affects neurotransmitter receptors related IP$_3$ signaling in rat brain.

  • PDF

The Study of in Vivo Visual Pathway Tracing using Magnetic Magnanese Tracer (자성 망간 추적자를 이용한 in Vivo 시신경경로 추적에 관한 연구)

  • Bae, Sung-Jin;Chang, Yong-Min
    • Progress in Medical Physics
    • /
    • v.18 no.1
    • /
    • pp.42-47
    • /
    • 2007
  • Purpose: To evaluate the tracing of optic nerve tract using manganese enhanced magnetic resonance Imaging. Materials and Methods: After injecting $30{\mu}l$ of $MnCl_2(1mol)$ (1 mol) Into the retina of female New Zealand white rabbit, the contrast enhancements at major anatomical structures of optic nerve tract were evaluated by high resolution T1-weighted Images 12 hours, 24 hours, and 48 hours after $MnCl_2(1mol)$ Injection using 3D FSPGR (Fast Speiled Gradient Recalled echo) pulse sequence at 1.5T clinical MR scanner with high performance gradient system. Also, for quantitative evaluation, the signal-to-noise ratios of circular ROI on anatomical locations were measured. Results: The major structures on the optic nerve tract were enhanced after injecting $MnCl_2(1mol)$. The structures, which showed enhancement, were right optic nerve, optic chiasm, left optic tract, left lateral geniculate nucleus, left superior colliculus. The structures on the contralateral optic pathway to the right retina were enhanced whereas the structures on the ipsilateral pathway did not show enhancement. Conclusion: The Mn transport through axonal pathway of optic nerve sys)em was non- invasively observed after injecting injecting $MnCl_2$ at the retina, which is the end terminal of optic nerve system. This Mn transport seems to occur by voltage gated calcium $(Ca^{2+})$ channel and In case of direct Injection Into the retina, the fast transpori pathway of voltage gated calcium channel seems to be responsible for Mn transport.

  • PDF

Difference in NOS between 2 Hz and 100 Hz EA in cerebral cortex, brain stem and cerebellum of spontaneously hypertensive rats (전침자극이 Spontaneously Hypertensive Rat의 대뇌겉질, 뇌줄기, 소뇌 부위의 Nitric Oxide Synthase 신경세포에 미치는 영향)

  • Kim, Jong-In;kim, Yong-Suk;Kim, Chang-Hwan
    • Journal of Acupuncture Research
    • /
    • v.18 no.4
    • /
    • pp.116-124
    • /
    • 2001
  • Background and Objetive : The aim of this study was to investigate the effect of various electroacupuncture stimulation on NADPH-diaphorase in cerebral cortex, brain stem, cerebellum of spontaneously hypertensive rats. Materials and Methods : We evaluated the changes of NADPH-d-positive neurons using a histochemical method. The staining intensity of NADPH-d-positive neurons was assessed in a quantitative fashion using a microdensitometrical method based on optical density by means of an image analyzer. Results and Conculsion : The average optical density of NADPH-d-positive neurons of 100 Hz (bipolar square wave 0.2 ms duration and 100 Hz frequency) electroacupuncture treatment group significantly increased in most cortical areas comparison between the manual acupuncture and 2 Hz (bipolar square wave 0.2 ms duration and 2 Hz frequency) electroacupuncture groups. In the brain stem, the optical density of NADPH-d-positive neuron at only superficial gray layer of the superior colliculus area was same as cerebral cortex. We conclude that the morphological evidence for NADPH-d-positive neurons may be have regional change in cerebral cortex brain stem and cerebellum according to various electroacupuncture stimulations.

  • PDF

Acupoint combination-related changes of NADPH-d diaphorase and neuronal nitric oxide synthase in the brainstem and cerebellum of spontaneously hypertensive rats (족삼리(足三里) 경혈배합(經穴配合)에 따른 SHR의 뇌줄기, 소뇌(小腦) 영역(領域)에서 NADPH-diaphorase와 nNOS, 신경세포(神經細胞)의 변화연구(變化硏究))

  • Lee, Hong-min;Kim, Chang-hwan;Kim, Yong-suk
    • Journal of Acupuncture Research
    • /
    • v.20 no.6
    • /
    • pp.148-159
    • /
    • 2003
  • Objective: This study examines the effects of acupoint combination on NADPH-diaphorase and neuronal nitric oxide synthase(nNOS) in the brainstem of spontaneously hypertensive rats. Methods: The changes of NADPH-d-positive neurons using a histochemical method and the changes of nNOS-positive neurons using an immunohistochemical method were evaluated. The optical densities of NADPH-d-positive neurons and nNOS-positive neurons of the Choksamni(ST36) Umnungchon(SP9) groups were significantly increased in all brainstem areas as compared to the Choksamni and Choksamni Kokchi(LI11) groups and decreased, with the exeption of the nNOS-positive neurons in the superficial gray of superior colliculus, as compared to the normal group. Results: Our results demonstrated that electroacupuncture changes the activity in the NO system in the brainstem of SHR and the acupoint combination is one of the important parameters for this effect.

  • PDF

Functional Characteristics of Lumbar Spinal Neurons Projecting to Midbrain Area in Rats

  • Park, Sah-Hoon;Kim, Geon
    • The Korean Journal of Physiology
    • /
    • v.28 no.2
    • /
    • pp.113-122
    • /
    • 1994
  • The present study was carried out to characterize the functional properties of spinomesencephalic tract (SMT) neurons in the lumbar spinal cord of urethane anesthetized rats. Extracellular single unit recordings were made from neurons antidromically activated by stimulation of the midbrain area, including the deep layers of superior colliculus, periaqueductal gray and midbrain reticular formation. Recording sites were located in laminae I-VII of spinal cord segments of L2-L5. Receptive field properties and responses to calibrated mechanical stimulation were studied in 78 SMT cells. Mean conduction velocity of SMT neurons was $19.1{\pm}1.04\;m/sec$. SMT units were classified according to their response profiles into four groups: wide dynamic range (58%), deep/tap (23%), high threshold (9%) and low threshold (3%). A simple excitatory receptive field was found for most SMT neurons recorded in superficial dorsal horn (SDH). Large complex inhibitory and/or excitatory receptive fields were found for cells in lateral reticulated area which usually showed long after-discharge. Most of SMT cells received inputs from $A{\delta}$ and C afferent fiber types. These results suggest that sensory neurons in the rat SMT may have different functional roles according to their location in the spinal cord in integrating and processing sensory inputs including noxious mechanical stimuli.

  • PDF