• Title/Summary/Keyword: superhydrophobic surface

Search Result 112, Processing Time 0.025 seconds

Molecular Dynamics Simulation Study on the Wetting Behavior of a Graphite Surface Textured with Nanopillars

  • Saha, Joyanta K.;Matin, Mohammad A.;Jang, Jihye;Jang, Joonkyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1047-1050
    • /
    • 2013
  • Molecular dynamic simulations were performed to examine the wetting behavior of a graphite surface textured with nanoscale pillars. The contact angle of a water droplet on parallelepiped or dome-shaped pillars was investigated by systematically varying the height and width of the pillar and the spacing between pillars. An optimal inter-pillar spacing that gives the highest contact angle was found. The droplet on the dome-covered surface was determined to be more mobile than that on the surface covered with parallelepiped pillars.

Droplet anti icing visualization research through hydrophobic variation of surface structure (소수성 표면의 형상 변화를 통한 액적의 방빙 가시화 연구)

  • Jinwook Choi;Wang Tao;Seolha Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.3
    • /
    • pp.7-14
    • /
    • 2023
  • In this study, we investigated the freezing delay time on surfaces with different patterns under -30° conditions through visualization experiments. Among various pattern structures, we fabricated the shape and surface of liquid from the spacing using circular filaments and hole structures. Additionally, using a high-speed camera, we visualized the freezing scenes, enabling us to obtain freezing images and measure the freezing time of the liquid. For each structure, the contact angle and solid fraction of the surface varied. We observed that the freezing delay time was longest when the contact angle was largest and the solid fraction was smallest within the experimental results. We analyzed the variation in anti-icing time using the heat exchange equation between the patterned surface and the liquid.

Elastic and Superhydrophobic Monolithic Methyltrimethoxysilane-based Silica Aerogels by Two-step Sol-gel Process

  • Mahadik, D.B.;Jung, Hae-Noo-Ree;Lee, Yoon Kwang;Lee, Kyu-Yeon;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.1
    • /
    • pp.35-39
    • /
    • 2016
  • The flexible and superhydrophobic properties of silica aerogels are extremely important material for thermal insulation and oil spill cleanup applications for their long-term use. Flexible silica aerogels were synthesized by using a two-step sol-gel process with precursors, methyltrimethoxysilane (MTMS) followed by supercritical drying. Silica aerogels were prepared at different molar ratio of methanol to MTMS (M). It was observed that the silica aerogels prepared at M=28 were monolithic but inelastic in nature, however, for M=35, the obtained aerogels were monolithic, elastic in nature with less shrinkage. The microstructural studies were carried out using scanning electron microscopy and surface area measurements. The hydrophobicity was confirmed by Fourier transform Infrared spectroscopy and water contact angle measurements. The detailed insight mechanism for flexible nature of silica aerogels and hydrophobic behavior were studied.

Development of micro- and nanostructures mimicking natural leaf surfaces for controlled hydrophilic and hydrophobic property

  • Kim, Daun;Park, Sunho;Lee, Dohyeon;Nam, Hyeun;Kim, Jangho
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.110-110
    • /
    • 2017
  • Biological systems offer unique principles for the design and fabrication of engineering platforms (i.e., popularly known as "Biomimetics") for various applications in many fields. For example, the lotus leaves exhibit unique surfaces consisting of evenly distributed micro and nanostructures. These unique surfaces of lotus leaves have the ability of superhydrophobic property to avoid getting wet by the surrounding water (i.e., Lotus effect). Inspired by the surface topographies of lotus leaves, the artificial superhydrophobic surfaces were developed using various micro- and nanoengineering. Here, we propose new platforms that can control hydrophilic and hydrophobic property of surfaces by mimicking micro- and nanosurfaces of various natural leaves such as common camellia, hosta plantaginea, and lotus. Using capillary force lithography technology and polymers in combination with biomimetic design principle, the unique micro- and nanostructures mimicking natural surfaces of common camellia, hosta plantaginea, and lotus were designed and fabricated. We also demonstrated that the replicated polymeric surfaces had different hydrophilic and hydrophobic properties according to the mimicking the natural leaf surfaces, which could be used as a simple, but powerful methodology for design and fabrication of controlled hydrophilic and hydrophobic platforms for various applications in the field of agriculture and biological engineering.

  • PDF

Preparation and Evaluation of Self-cleaning Fabrics using Fe-doped TiO2 and Hexadecyltrimethoxysilane (Fe 도핑된 TiO2와 헥사데실트리메톡시실란를 이용한 셀프클리닝 섬유의 제조 및 평가)

  • Mun, Yejin;Cho, Seungbin;Jeong, Euigyung;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.32 no.3
    • /
    • pp.158-166
    • /
    • 2020
  • Self-cleaning fabric is a fabric having a function of decotamination via photodecomposition of photocatalyst or wash-off of contaminants on the superhydrophobic surface. TiO2 is the main photocatalyst for this purpose, but it only functions under UV light which is only a little portion of sunlight, compared to visible light. In this regard, this study aims to investigate Fe-doped TiO2 for improved photodecomposition from visible light sensitization to apply self-cleaning finishing of PET fabrics. Moreover, the Fe-doped TiO2 treated PET fabric was further treated with hexadecyltrimethoxysilane to provide superhydrophobicity on the PET fabrics. As a result of this dual treatment, the prepared fabric exhibited excellent photodecomposition of methylene blue with 96.96% in 12h under sunlight and superhydrophobicity with water contact angle of 166.5° and roll-off angle of 7°. This suggested that the excellent self-cleaning functions can be privided to PET fabric via Fe-doped TiO2 and hexadecyltrimethoxysilane treatment.

Fabrication of Superhydrophobic Film with Uniform Structures Using Two Step Lithography and Nanosilica Coating (Two step lithography와 나노 실리카 코팅을 이용한 초발수 필름 제작)

  • Yu, Chaerin;Lee, Dong-Weon
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.251-255
    • /
    • 2019
  • We propose a two-step lithography process to minimize edge-bead issues caused by thick photoresist (PR) coating. In the conventional PR process, the edge bead can be efficiently removed by applying an edge-bead removal (EBR) process while rotating the silicon wafer at a high speed. However, applying conventional EBR to the production of desired PR mold with unique negative patterns cannot be used because a lower rpm of spin coating and a lower temperature in the soft bake process are required. To overcome this problem, a two-step lithography process was developed in this study and applied to the fabrication of a polydimethylsiloxane (PDMS) film having super-hydrophobic characteristics. Following UV exposure with a first photomask, the exposed part of the silicon wafer was selectively removed by applying a PR developer while rotating at a low rpm. Then, unique PR mold structures were prepared by employing an additional under-exposure process with a second mask, and the mold patterns were transferred to the PDMS. Results showed that the fabricated PDMS film based on the two-step lithography process reduced the height difference from 23% to 5%. In addition, the water contact angle was greatly improved by spraying of hydrophobic nanosilica on the dual-scaled PDMS surface.

Surface Patterning and Characterization of Food Packaging Films Using Femtosecond Laser (펨토초 레이저를 이용한 식품포장 필름의 표면 패터닝 및 특성)

  • Youngjin Cho
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.2
    • /
    • pp.111-118
    • /
    • 2023
  • In this study, the feasibility of laser patterning on the surface of food packaging polymer film was confirmed, and the surface patterning process conditions of femtosecond laser were established. In addition, it was proved that the surface properties of the film can be changed and controlled through the fabrication of various patterned films on the surface of food packaging films such as HDPE, PP, and PET. Various patterned surfaces, including large-scale circular patterns induced by a single femtosecond laser pulse, roughness patterns achieved by overlapping single pulses by 30%, straight line patterns, roughness patterns obtained by overlapping straight line patterns, and grid patterns formed by intersecting straight line patterns were fabricated. The characteristics of the patterned HDPE, PP, and PET films, based on the surface pattern structure and size, were analyzed using SEM, AFM, and contact angle measurements. Compared to the surface of each control film without femtosecond laser patterning, the contact angles of the surfaces of large-area circular patterning HDPE and PP films, large-area roughness patterning HDPE and PP films by overlapping 30% of single pulses, and large-area roughness patterning PET film by overlapping rectilinear patterning were in the range of 27.1-37.5 degree. This indicated that the HDPE, PP, and PET films became more hydrophilic after patterning. On the other hand, the HDPE film patterned with a large-scale grid pattern exhibited a contact angle of 120.4 degree, indicating that the HDPE film became more hydrophobic after patterning. Therefore, films that have been changed to hydrophilic surfaces through patterning can be used in anti-fouling applications where proteins, cells, viruses, and other food materials do not adhere or are easily detached. In addition, if a superhydrophobic surface of 150 degrees or more is fabricated through more precise lattice patterning in the future, it will be possible to use it for superhydrophobic surface applications such as self-cleaning.

Anti-freezing effect of mortar surface with superhydrophobic water repellent (초소수성 발수제를 사용한 모르타르 표면의 결빙 방지 효과)

  • Kim, Sang-Jin;In, Byung-Eun;Kang, Suk-Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.15-16
    • /
    • 2022
  • In order to examine the adhesion characteristics of road pavement according to environmental conditions, the freezing time of cement mortar and the adhesion performance between ice and pavement were evaluated depending on the presence or absence of polymer and water repellent. As a result of measuring the ice formation time, it was found that there was no delay when a polymer was added, but the complete freezing time was delayed when a water repellent was added. As a result of measuring the strength of ice adhesion, it was found that the bonding force between ice and the surface of the test body was greatly generated in the test body without water repellent. In the case of a test specimen to which a water repellent was added, it was found that the bonding strength between the test specimen surface and ice was reduced.

  • PDF

Synthesis and Evaluation of Superhydrophobic ODA/PDMS Dip Coating on PET for Liquid-Solid Contact Electrification (액체-고체 접촉대전을 위한 PET 기판 기반 ODA/PDMS 딥 코팅 제조 및 평가)

  • Park, Sunyoung;Kang, Hyungyu;Byun, Doyoung;Cho, Dae-Hyun
    • Tribology and Lubricants
    • /
    • v.37 no.2
    • /
    • pp.71-76
    • /
    • 2021
  • As opposed to using fossil fuels, we need to use eco-friendly resources such as sunlight, raindrops and wind to produce electricity and combat environmental pollution. A triboelectric nanogenerator (TENG) is a device that converts mechanical energy into electricity by inducing repetitive contact and separation of two dissimilar materials. During the contact and separation processes, electron flow occurs owing to a change in electric potential of the contacting surface caused by contact electrification and electrostatic induction mechanisms. A solid-solid contact TENG is widely known, but it is possible to generate electricity via liquid-solid contact. Therefore, by designing a hydrophobic TENG, we can gather electricity from raindrop energy in a feasible manner. To fabricate the superhydrophobic surface of TENGs, we employ a dip coating technique to synthesize an octadecylamine (ODA)- and polydimethylsiloxane (PDMS)-based coating on polyethylene terephthalate (PET). The synthesized coating exhibits superhydrophobicity with a contact angle greater than 150° and generates a current of 2.2 ㎂/L while water droplets fall onto it continuously. Hence, we prepare a box-type TENG, with the ODA/PDMS coating deposited on the inside, and place a 1.5 mL water droplet into it. Resultantly, we confirm that the induced vibration causes continuous impacts between the ODA/PDMS coating and the water, generating approximately 100 pA for each impact.