• Title/Summary/Keyword: superelasticity

Search Result 39, Processing Time 0.029 seconds

형상기억합금의 특성 및 응용

  • Lee, In;Yang, Seung-Man
    • Journal of the KSME
    • /
    • v.44 no.6
    • /
    • pp.34-39
    • /
    • 2004
  • 형상기억합금(SMA : Shape Memory Alloy)은 일반적인 금속이나 합금에서는 찾아볼 수 없는 형상기억효과(shape memory effect)와 초탄성 (superelasticity) 거동을 보이고 있다. 이러한 특성은 1951년에 금-카드뮴(Au-Cd) 합금에서 처음으로 발견되었으며, 1963년에 미국 해군병기연구소(Naval Ordnance Laboratory)에서 니켈-티타늄 (Ni-Ti) 합금에서 형상기억효과를 발견한 후로 널리 상용화되었다. 니티놀(nitinol)이라고 불려지는 니켈-티타늄 계열의 형상기억합금은 단위 부피당 많은 에너지를 낼 수 있고, 내 부식성(corrosion resistance)과 생화학적 적합성(bio-compatibility)이 뛰어나다. 또한 100,000사이클 이상의 긴 사용수명을 갖기 때문에 작동기(actuator)로서 우수한 특징을 갖는다. (중략)

  • PDF

SUPERELASTICITY OF CAST SHAPE MEMORY Ni-Ti ALLOY (주조 형상기억 니켈-티타늄 합금의 초탄성)

  • Choi, Dong-Ik;Choie, Mok-Kyun
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.3 no.1
    • /
    • pp.32-43
    • /
    • 1995
  • Ni-Ti alloy has excellent corrosion resistance, biocompatibility, shape memory effect and superelasticity, so it has been used widely in biomedical fields. But it has difficulty in casting due to its high melting temperature and oxygen affinity at high temperature. Recently it has been attempted to cast Ni-Ti alloy using new casting machine and investment. The purpose of this study was to examine the superelastic behavior of cast shape memory Ni-Ti alloy and to compare the mechanical properties of the cast shape memory alloy with those of commercial alloys for removable partial denture framework. Ni-Ti alloy(Ni 50.25%, Ti 49.75% : atomic ratio) was cast with dental argon-arc pressure casting machine and Type IV gold alloy, Co-Cr alloy, Ni-Cr alloy, pure titanium were cast as reference. Experimental cast Ni-Ti alloy was treated with heat($500{\pm}2^{\circ}C$) in muffle furnace for 1 hour. Transformation temperature range of cast Ni-Ti alloy was measured with differential scanning calorimetry. The superelastic behavior and mechanical properties of cat Ni-Ti alloy were observed and evaluated by three point bending test, ultimate tensile test, Vickers microhardness test and scanning electron microscope. The results were as follows : 1. Cast Ni-Ti alloy(Ni 50.25%, Ti 49.75% : atomic ratio) was found to have superelastic behavior. 2. Stiffness of cast Ni-Ti alloy was considerably lesser than that of commercial alloys for removable partial denture. 3. Permanent deformation was observed in commercial alloys for removable partial denture framework at three point bending test over proportional limit(1.5mm deflection), but was not nearly observed in cast Ni-Ti alloy. 4. On the mechanical properties of ultimate tensile strength, elongation and Vickers microhardness number, cast Ni-Ti alloy was similiar to Type IV gold alloy, Co-Cr alloy, Ni-Cr alloy and pure titanium. With these results, cast Ni-Ti alloy had superelastic behavior and low stiffness. Therefore, it is suggested that cast Ni-Ti alloy may be applicated to base metal alloy for removable partial denture framework.

  • PDF

Characterization of Co-Ni Based Ferromagnetic Shape Memory Alloy (자성 Co-Ni 계 형상기억합금의 특성)

  • Han, Ji-Won;Park, Sung Bum
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.8-13
    • /
    • 2015
  • The magnetic shape memory alloys have recently received a lot of attention due to the considerable progress achieved in understanding the particular importance and the development of the factors. Among these alloys, the ferromagnetic Co-Ni- alloys have been concerned specially because of the thermoelastic character of the fcc (g) - bct (a) martensitic transformation which exhibits under the action of the temperature (shape memory effect), the stress (superelasticity) and the magnetic field (magnetoelasticity). The morphological, the crystallographical, and the thermal characteristics of thermally induced martensite in Co-35.3Ni-11.3Al(wt.%) and Co-28.1Ni-47.4Fe-3.3Ti (wt.%) alloy have been investigated by the scanning electron microscope (SEM), the X-ray Diffraction (XRD), and the differential scanning calorimeter (DSC).

Development and Application of Porous Superelastic TiNi Materials for Medical Implants

  • Gjunter, V.E.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1998.10b
    • /
    • pp.7-7
    • /
    • 1998
  • Research activities of Russian Medical Engineering Center and Institute of Medical Materials of Shape Memory Alloys and Implants are presented as follows: ${\bullet}$ The direction of elaboration of porous shape memory alloys for medicine. ${\bullet}$ Medical and technical requirements and physical and mechanical criteria of porous shape memory implants elaboration. ${\bullet}$ Basic laws of heat-, stress- and strain-induced changes of mechanical properties, shape memory effect and superelasticity in porous TiNi-based alloys. ${\bullet}$ Methods of regulation of shape memory effect parameters in porous alloys and methods for controlling the regulation-induced changes of physical and mechanical properties. ${\bullet}$ Original technologies of elaboration of porous alloys In various fields of medicine. ${\bullet}$ Arrangement of serial production of shape memory porous implants and examples of their medical use.

  • PDF

CHANCE OF MECHANICAL PROPERTIES IN NITINOL BY FATIGUE LOAD (피로하중에 의한 NITINOL의 기계적 성질의 변화)

  • Ha, Kook-Bong;Shon, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.23 no.4 s.43
    • /
    • pp.725-734
    • /
    • 1993
  • Nitinol wires are now widely used in the orthodontic field because of their unique shape memory effect and superelasticity. But sometimes Nitinol wires are deformed in clinical use. Fatigue load is possible cause of Nitinol deformation. To determine the effect of fatigue load to the mechanical properties of Nitinol, various fatigue cycle$(1\times10^4,\;2\times10^4,\;3\times10^4,\;4\times10^4,\;5\times10^4,\;1\times10^5)$ were applied to $0.017\times0.025$ inch Nitinol. The results obtained were as follows ; 1. Applied load increased as fatigue cycle increased in three point bending test. 2. Maximum tensile strength and elongation decreased as fatigue cycle increased. 3. Tn SEM, brittle fracture pattern was increased when fatigue cycle increased.

  • PDF

Analysis on the Behavior of the Shape Memory Alloy Using Abaqus UMAT (Abaqus UMAT을 이용한 형상기억합금 거동 해석)

  • Kim, Young-Jin;Chung, Jong-Ha;Lee, Jung-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1153-1160
    • /
    • 2008
  • In this paper, the algorithm of Abaqus UMAT is introduced to analyze the shape memory alloy. The SMA has two main effects which show non-linearity. Due to this, it is hard to analyze SMA using analysis tools and to describe all of two effects. Therefore, in this study, the program using Abaqus UMAT based on Modified Brinson model is used to analyze SMA. The martensite fraction, the most important factor which defines SMA motion, is also calculated by Fortran program in UMAT. In addition, the tensile test of SMA specimen is conducted. The availability of algorithm is proved by comparing analysis to experimental result.

Seismic performance of concrete frames reinforced with superelastic shape memory alloys

  • Youssef, M.A.;Elfeki, M.A.
    • Smart Structures and Systems
    • /
    • v.9 no.4
    • /
    • pp.313-333
    • /
    • 2012
  • Reinforced concrete (RC) framed buildings dissipate the seismic energy through yielding of the reinforcing bars. This yielding jeopardizes the serviceability of these buildings as it results in residual lateral deformations. Superelastic Shape Memory Alloys (SMAs) can recover inelastic strains by stress removal. Since SMA is a costly material, this paper defines the required locations of SMA bars in a typical RC frame to optimize its seismic performance in terms of damage scheme and seismic residual deformations. The intensities of five earthquakes causing failure to a typical RC six-storey building are defined and used to evaluate seven SMA design alternatives.

A Study of the Characteristics of Cast Ni-Ti Alloy for Biomaterial with Compositional Change (정밀 주조한 생체용 Ni-Ti합금의 조성변화에 따른 특성 연구)

  • 권오원;김교한
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.283-290
    • /
    • 1993
  • In thls study, the effects of the composltional change of cast Ni-Ti alloys on its characteristics including mechanical properties, phase transformation temperature, and ion releasing rate were investigated. brittle:behavior was shown in the stress-strain curve of the alloy containing low Ti content (Ni-44.0%Ti). By increasing the Ti content, the trend in stress-strain curves changed from that of superelasticity to that of shape memory effect(Ni-44.4%Ti, Ni-45.1%Ti, Ni-45, 5%Ti). Phase transformation temperature ($A_f, {\;}M_5$ point) increased with increasing the Ti content. lon releasing rate of four types of Mi-Ti alloys was very low compared to that of the dental commerical Ni-Cr alloy.

  • PDF

Mechanical properties of nickel titanium and steel alloys under stress-strain test

  • GRAVINA, Marco A;QUINTAO, Catia A;KOO, Daniel;ELIAS, Carlos N
    • The korean journal of orthodontics
    • /
    • v.33 no.6 s.101
    • /
    • pp.465-474
    • /
    • 2003
  • The great variety of commercial brands of orthodontic wires available on the market, stimulated by the so called superior wires (nickel titanium with shape memory effect and superelastic nickel titanium), makes the professional choice for a suitable and less expensive material difficult. The in vitro study of the mechanical properties of the orthodontic wires acts as an auxiliary tool for the professional. In this paper, a comparative study of mechanical properties was made, using stress strain tests for 4 types of orthodontic wires (conventional stainless steel, multistranded steel, superelastic nickel titanium and thermoactivated nickel titanium) separated into 5 groups. A series of 6 tests were tested for each group of wires. Initially, each group was tested 3 times until the wires broke. Furthermore, 3 more tests for each group were performed, stretching the wires under standardized activation loads, for a reliable comparison of their mechanical properties, during loading and unloading. 1 tests were applied to check differences among the groups. In vitro, the results suggest that regarding the mechanical properties supposedly desirable for physiological teeth movement, such as resilience, elasticity modulus, strength liberated during unloading, and the way that strength is liberated, thermoactivated nickel titanium wires, acting under mouth temperature, seems to be a good choice, fellowed by superelastic nickel titanium, multistranded stainless steel, and conventional stainless sleet. Superelasticity was demonstrated for superelastic nickel titanium wires. When at $37^{\circ}C$, thermoactivated nickel titanium wires showed shape memory effect, showing that temperature is important for enhancing the mechanical properties.

A STUDY CONCERNING THE CHARACTERISTICS OF KOREAN NI-TI ALLOY ORTHODONTIC WIRE (국산 Ni-Ti합금 교정용 선재의 특성에 관한 연구)

  • Park, Dong-Ok;Kwon, Oh-Won
    • The korean journal of orthodontics
    • /
    • v.25 no.2 s.49
    • /
    • pp.187-200
    • /
    • 1995
  • To estimate the characteristics of Korean Ni-Ti alloy orthodontic wire, this study investigated compositions, tensile properties, bending properties, heat treatment effects, and ion releasing degrees, and compared these characteristics to those of the imported Ni-Ti alloy wire. The results obtained are as follows ; 1. Ti and -Ni elements in ORTHOLLOY were in a range showing superelasticity, and there was a little difference in the Ni and Ti contents of ORTHOLLOY as compared with those of SENTALLOY. 2. The results of the tensile test concerning ORTHOLLOY exhibited a superelastic effect, indicating an area of a definite amount of stress in spite of the changes in the range from $2\%\;to\;8\%$ in the strain rate. 3. ORTHOLLOY presented higher load values than SENTALLOY in the same deflection values when the wire was tested in three-point bending. A load range displaying a superelastic effect was 80-l00g, 140-l80g, and 130-200g respectively, in wire diameters of 0.014', 0.016', and 0.018' 4. By heat treatments at $400^{\circ}C$ and at $500^{\circ}C$, a load range showing the effect of superelasticitly was lessened by the duration of the heat treatment time. The superelastic effect was destroyed as a result of the 10 minutes heat treatment at $600^{\circ}C$. 5. The quantity of the Ni ion released from ORTHOLLOY, tended to be greater than the amount of released Ni ion in SENTALLOY. The Co ion released was very little(<0.01ppm) in SENTALLOY and ORTHOLLOY irrespective of the lapse of time. Released Ni ions on the 1st day were at the maximum, and the releasing rate showed plateaus after three days. 6. The surface morphology of SENTALLOY was relatively regular irrespective of the lapse of rime, and the corrosion tendency was not observed. However, the surface morphology of ORTHOLLOY was rather irregular and shelved fitting corrosion after immersion.

  • PDF