• 제목/요약/키워드: superelastic shape memory alloys

검색결과 23건 처리시간 0.017초

Analysis of extended end plate connection equipped with SMA bolts using component method

  • Toghroli, Ali;Nasirianfar, Mohammad Sadegh;Shariati, Ali;Khorami, Majid;Paknahad, Masoud;Ahmadi, Masoud;Gharehaghaj, Behnam;Zandi, Yousef
    • Steel and Composite Structures
    • /
    • 제36권2호
    • /
    • pp.213-228
    • /
    • 2020
  • Shape Memory Alloys (SMAs) are new materials used in various fields of science and engineering, one of which is civil engineering. Owing to their distinguished capabilities such as super elasticity, energy dissipation, and tolerating cyclic deformations, these materials have been of interest to engineers. On the other hand, the connections of a steel structure are of paramount importance because of their vulnerabilities during an earthquake. Therefore, it is indispensable to find approaches to augment the efficiency and safety of the connection. This research investigates the behavior of steel connections with extended end plates equipped hybridly with 8 rows of high strength bolts as well as Nitinol superelastic SMA bolts. The connections are studied using component method in dual form. In this method, the components affecting the connections behavior, such as beam flange, beam web, column web, extended end plate, and bolts are considered as parallel and series springs according to the Euro-Code3. Then, the nonlinear force- displacement response of the connection is presented in the form of moment-rotation curve. The results obtained from this survey demonstrate that the connection has ductility, in addition to its high strength, due to high ductility of SMA bolts.

형상기억합금 비틀림 튜브 작동기의 거동 해석 (Analyses of Behaviors of a Shape-Memory-Alloy Torque Tube Actuator)

  • 김준형;김철
    • 대한기계학회논문집A
    • /
    • 제34권8호
    • /
    • pp.1083-1089
    • /
    • 2010
  • 형상기억합금은 지능형 재료와 구조물에 널리 쓰인다. 큰 힘과 변위를 발생시키는 것이 특징이며 작동기, 소음 및 진동감쇠, 동역학적 튜닝, 형상의 변형 제어 등의 다양한 분야에 응용될 수 있다. 본 논문에 서는 형상기억합금튜브와 초탄성 스프링으로 구성된 형상기억합금 비틀림 작동기를 제안하였고 각각의 거동 특성을 알아보았다. 열전달 해석을 통해 저항열과 히터의 열을 동시에 형상기억합금튜브에 가하면 작동기의 성능을 더 향상시킬 수 있음을 확인하였다. 접촉 해석으로는 실제 작동기의 거동을 시뮬레이션하였고 정상적으로 작동함을 알 수 있었다. 3 차원 형상기억합금의 거동을 표현하기 위해 비선형 구성방정식을 유한요소 법으로 풀고 ABAQUS 의 U-MAT 기능을 이용하여 비선형 해석을 수행하였다.

Ti-Ni-Cu 형상기억합금의 상변태 및 초탄성에 미치는 가공열처리의 영향 (Effect of Thermomechanical Treatment on the Phase Transformation and Superelasticity in Ti-Ni-Cu Shape Memory Alloy)

  • 이오연;박영구;천병선
    • 열처리공학회지
    • /
    • 제7권4호
    • /
    • pp.253-261
    • /
    • 1994
  • Transformation behavior and superelastic behavior of Ti-Ni-Cu alloys with various Cu content has been investigated by means of electrical resistivity measurement, X-ray diffraction, tensile test and transmission electron microscopy. Two types of heat treatment are given to the specimens: i) Solutions treatment. ii) thermo-mechanical treatment. The transformation sequence in solution treated Ti-Ni-Cu Alloys substituted by Cu for Ni up to 5at.% occurs to $B2{\rightleftarrows}B19^{\prime}$ and it proceeds in two stages by addition of 10at.%Cu, i. e, $B2{\rightleftarrows}B19{\rightleftarrows}B19^{\prime}$. Also, it has been found that Ti-30Ni-20Cu alloy transformed in one stage : $B2{\rightleftarrows}B19$. The thermo-mechanically treated Ti-47Ni-3Cu alloy transformed in two stages: B2${\rightleftarrows}$rhomboheral phase${\rightleftarrows}B19^{\prime}$, while transformation sequence in Ti-45Ni-5Cu and Ti-40Ni-10Cu alloy transformed as same as solution treated specimens. The critical stress for inducing slip deformation in solution treated and thermo-mechanically treated Ti-40Ni-10Cu alloy is about 90MPa and 320Mpa respectively.

  • PDF