• Title/Summary/Keyword: supercritical

Search Result 1,095, Processing Time 0.027 seconds

Optimization of TDA Recycling Process for TDI Residue using Near-critical Hydrolysis Process (근임계수 가수분해 공정을 이용한 TDI 공정 폐기물로부터 TDA 회수 공정 최적화)

  • Han, Joo Hee;Han, Kee Do;Jeong, Chang Mo;Do, Seung Hoe;Sin, Yeong Ho
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.650-658
    • /
    • 2006
  • The recycling of TDA from solid waste of TDI plant(TDI-R) by near-critical hydrolysis reaction had been studied by means of a statistical design of experiment. The main and interaction effects of process variables had been defined from the experiments in a batch reactor and the correlation equation with process variables for TDA yield had been obtained from the experiments in a continuous pilot plant. It was confirmed that the effects of reaction temperature, catalyst type and concentration, and the weight ratio of water to TDI-R(WR) on TDA yield were significant. TDA yield decreased with increases in reaction temperature and catalyst concentration, and increased with an increase in WR. As a catalyst, NaOH was more effective than $Na_2CO_3$ for TDA yield. The interaction effects between catalyst concentration and temperature, WR and temperature, catalyst type and reaction time on TDA yield had been defined as significant. Although the effect of catalyst concentration on TDA yield at $300^{\circ}C$ as subcritical water was insignificant, the TDA yield decreased with increasing catalyst concentration at $400^{\circ}C$ as supercritical water. On the other hand, the yield increased with an increase in WR at $300^{\circ}C$ but showed negligible effect with WR at $400^{\circ}C$. The optimization of process variables for TDA yield has been explored with a pilot plant for scale-up. The catalyst concentration and WR were selected as process variables with respect to economic feasibility and efficiency. The effects of process variables on TDA yield had been explored by means of central composite design. The TDA yield increased with an increase in catalyst concentration. It showed maximum value at below 2.5 of WR and then decreased with an increase in WR. However, the ratio at which the TDA yield showed a maximum value increased with increasing catalyst concentration. The correlation equation of a quadratic model with catalyst concentration and WR had been obtained by the regression analysis of experimental results in a pilot plant.

Splenocyte-mediated immune enhancing activity of Sargassum horneri extracts (괭생이 모자반 추출물의 비장세포 면역활성 증강 효과)

  • Kim, Dong-Sub;Sung, Nak-Yun;Han, In-Jun;Lee, Byung-Soo;Park, Sang-Yun;Nho, Eun Young;Eom, Ji;Kim, Geon;Kim, Kyung-Ah
    • Journal of Nutrition and Health
    • /
    • v.52 no.6
    • /
    • pp.515-528
    • /
    • 2019
  • Purpose: This study examined the immunological activity and optimized the mixture conditions of Sargassum horneri (S. horneri) extracts in vitro and in vivo models. Methods: S. horneri was extracted using three different methods: hot water extraction (HWE), 50% ethanol extraction (EE), and supercritical fluid extraction (SFE). Splenocyte proliferation and cytokine production (Interleukin-2 and Interferon-γ) were measured using a WST-1 assay and enzyme-linked immunosorbent assay, respectively. The levels of nitric oxide and T cell activation production were measured using a Griess assay and flow cytometry, respectively. The natural killer (NK) cell activity was determined using an EZ-LDH kit. Results: Among the three different types of extracts, HWE showed the highest levels of splenocyte proliferation and cytokine production in vitro. In the animal model, three different types of extracts were administrated for 14 days (once/day) at 50 and 100 mg/kg body weight. HWE and SFE showed a high level of splenocyte proliferation and cytokine production in the with and without mitogen-treated groups, whereas EE administration did not induce the splenocyte activation. When RAW264.7 macrophage cells were treated with different mixtures (HWE with 5, 10, 15, 20% of SFE) to determine the optimal mixture ratio of HWE and SFE, the levels of nitric oxide and cytokine production increased strongly in the HWE with 5% and 10% of SFE containing group. In the animal model, HWE with 5% and 10% of SFE mixture administration increased the levels of splenocyte proliferation, cytokine production, and activated CD4+ cell population significantly, with the highest level observed in the HWE with 5% of SFE group. Moreover, the NK cell activity was increased significantly in the HWE with 5% of SFE mixture-treated group compared to the control group. Conclusion: The optimal mixture condition of S. horneri with immune-enhancing activity is the HWE with 5% of SFE mixture. These results confirmed that the extracts of S. horneri and its mixtures are potential candidate materials for immune enhancement.

Immunomodulating activity of Sargassum horneri extracts in RAW264.7 macrophages (RAW264.7 대식세포에서 괭생이 모자반 추출물의 면역활성 증진 효과)

  • Kim, Dong-Sub;Sung, Nak-Yun;Park, Sang-Yun;Kim, Geon;Eom, Ji;Yoo, Jin-Gon;Seo, In-Ra;Han, In-Jun;Cho, Young-Baik;Kim, Kyung-Ah
    • Journal of Nutrition and Health
    • /
    • v.51 no.6
    • /
    • pp.507-514
    • /
    • 2018
  • Purpose: Sargassum horneri (S. horneri) is a species of brown macroalgae that is common along the coast of Japan and Korea. The present study investigated the immuno-modulatory effects of different types of S. horneri extracts in RAW264.7 macrophages. Methods: S. horneri was extracted by three different methods, hot water extraction, 50% ethanol extraction, and supercritical fluid extraction. Cell viability was then measured by MTT assay, while the production levels of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-6 (IL-6), and nitric oxide (NO) were measured by enzyme-linked immunosorbent assay and Griess assay, respectively. The expression and activation levels of inducible NO synthase (iNOS), mitogen-activated protein kinase (MAPK) and nuclear factor ${\kappa}B$ ($NF-{\kappa}B$) were examined by western blot analysis. Results: The three different S. horneri extracts were nontoxic against RAW 264.7 cells up to $50{\mu}g/mL$, among which treatment with hot water extract (HWE) of S. horneri significantly enhanced the production of TNF-${\alpha}$, IL-6, and NO in a dose-dependent manner. Hot water extract of S. horneri also increased the expression level of iNOS, suggesting that up-regulation of iNOS expression by HWE of S. horneri was responsible for the induction of NO production. In addition, treatment of RAW 264.7 macrophages with HWE of S. horneri increased the phosphorylation levels of ERK, p38 and JNK. Furthermore, the activation and subsequent nuclear translocation of $NF-{\kappa}B$ was enhanced upon treatment with HWE of S. horneri, indicating that HWE of S. horneri activates macrophages to secrete TNF-${\alpha}$, IL-6 and NO and induces iNOS expression via activation of the $NF-{\kappa}B$ and MAPKs signaling pathways. Conclusion: Taken together, these findings suggest that HWE of S. horneri possesses potential as a functional food with immunomodulatory activity.

The Effect of the Surfactant on the Migration and Distribution of Immiscible Fluids in Pore Network (계면활성제가 공극 구조 내 비혼성 유체의 거동과 분포에 미치는 영향)

  • Park, Gyuryeong;Kim, Seon-Ok;Wang, Sookyun
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.105-115
    • /
    • 2021
  • The geological CO2 sequestration in underground geological formation such as deep saline aquifers and depleted hydrocarbon reservoirs is one of the most promising options for reducing the atmospheric CO2 emissions. The process in geological CO2 sequestration involves injection of supercritical CO2 (scCO2) into porous media saturated with pore water and initiates CO2 flooding with immiscible displacement. The CO2 migration and distribution, and, consequently, the displacement efficiency is governed by the interaction of fluids. Especially, the viscous force and capillary force are controlled by geological formation conditions and injection conditions. This study aimed to estimate the effects of surfactant on interfacial tension between the immiscible fluids, scCO2 and porewater, under high pressure and high temperature conditions by using a pair of proxy fluids under standard conditions through pendant drop method. It also aimed to observe migration and distribution patterns of the immiscible fluids and estimate the effects of surfactant concentrations on the displacement efficiency of scCO2. Micromodel experiments were conducted by applying n-hexane and deionized water as proxy fluids for scCO2 and porewater. In order to quantitatively analyze the immiscible displacement phenomena by n-hexane injection in pore network, the images of migration and distribution pattern of the two fluids are acquired through a imaging system. The experimental results revealed that the addition of surfactants sharply reduces the interfacial tension between hexane and deionized water at low concentrations and approaches a constant value as the concentration increases. Also it was found that, by directly affecting the flow path of the flooding fluid at the pore scale in the porous medium, the surfactant showed the identical effect on the displacement efficiency of n-hexane at equilibrium state. The experimental observation results could provide important fundamental information on immiscible displacement of fluids in porous media and suggest the potential to improve the displacement efficiency of scCO2 by using surfactants.

Security and Safety Assessment of the Small-scale Offshore CO2 Storage Demonstration Project in the Pohang Basin (포항분지 해상 중소규모 CO2 지중저장 실증연구 안전성 평가)

  • Kwon, Yi Kyun;Chang, Chandong;Shinn, Youngjae
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.217-246
    • /
    • 2018
  • During the selection and characterization of target formations in the Small-scale Offshore $CO_2$ Storage Demonstration Project in the Pohang Basin, we have carefully investigated the possibility of induced earthquakes and leakage of $CO_2$ during the injection, and have designed the storage processes to minimize these effects. However, people in Pohang city have a great concern on $CO_2$-injection-intrigued seismicity, since they have greatly suffered from the 5.4 magnitude earthquake on Nov. 15, 2017. The research team of the project performed an extensive self-investigation on the safety issues, especially on the possible $CO_2$ leakage from the target formation and induced earthquakes. The target formation is 10 km apart from the epicenter of the Pohang earthquake and the depth is also quite shallow, only 750 to 800 m from the sea bottom. The project performed a pilot injection in the target formation from Jan. 12 to Mar. 12, 2017, which implies that there are no direct correlation of the Pohang earthquake on Nov. 15, 2017. In addition, the $CO_2$ injection of the storage project does not fracture rock formations, instead, the supercritical $CO_2$ fluid replaces formation water in the pore space gradually. The self-investigation results show that there is almost no chance for the injection to induce significant earthquakes unless injection lasts for a very long time to build a very high pore pressure, which can be easily monitored. The amount of injected $CO_2$ in the project was around 100 metric-tonne that is irrelevant to the Pohang earthquake. The investigation result on long-term safety also shows that the induced earthquakes or the reactivation of existing faults can be prevented successfully when the injection pressure is controlled not to demage cap-rock formation nor exceed Coulomb stresses of existing faults. The project has been performing extensive studies on critical stress for fracturing neighboring formations, reactivation stress of existing faults, well-completion processes to minimize possible leakage, transport/leakage monitoring of injected $CO_2$, and operation procedures for ensuring the storage safety. These extensive studies showed that there will be little chance in $CO_2$ leakage that affects human life. In conclusion, the Small-scale Offshore $CO_2$ Storage Demonstration Project in the Pohang Basin would not cause any induced earthquakes nor signifiant $CO_2$ leakage that people can sense. The research team will give every effort to secure the safety of the storage site.