• Title/Summary/Keyword: superconvergent patch recovery technique

Search Result 5, Processing Time 0.024 seconds

p-Adaptive Mesh Refinement of Plate Bending Problem by Modified SPR Technique (수정 SPR 기법에 의한 휨을 받는 평판문제의 적응적 p-체눈 세분화)

  • Jo, Jun-Hyung;Lee, Hee-Jung;Woo, Kwang-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.481-486
    • /
    • 2007
  • The Zienkiewicz-Zhu(Z/Z) error estimate is slightly modified for the hierarchical p-refinement, and is then applied to L-shaped plates subjected to bending to demonstrate its effectiveness. An adaptive procedure in finite element analysis is presented by p-refinement of meshes in conjunction with a posteriori error estimator that is based on the superconvergent patch recovery(SPR) technique. The modified Z/Z error estimate p-refinement is different from the conventional approach because the high order shape functions based on integrals of Legendre polynomials are used to interpolate displacements within an element, on the other hand, the same order of basis function based on Pascal's triangle tree is also used to interpolate recovered stresses. The least-square method is used to fit a polynomial to the stresses computed at the sampling points. The strategy of finding a nearly optimal distribution of polynomial degrees on a fixed finite element mesh is discussed such that a particular element has to be refined automatically to obtain an acceptable level of accuracy by increasing p-levels non-uniformly or selectively. It is noted that the error decreases rapidly with an increase in the number of degrees of freedom and the sequences of p-distributions obtained by the proposed error indicator closely follow the optimal trajectory.

  • PDF

Adaptive Finite Element Method by Selective p-Distribution (선택적 p-분배에 의한 적응적 유한 요소법)

  • 조준형;우광성;박진환;안재석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.288-295
    • /
    • 2003
  • An adaptive procedure in finite element analysis is presented by p-refinement of meshes in conjunction with a posteriori error estimator that is based on the recovery technique. In case of the recovery technique, the SPR(superconvergent patch recovery) approach has been modified for p-adaptive mesh refinement. The strategy of finding a nearly optimal distribution of polynomial degrees on a fixed finite element mesh is discussed such that a particular element has to be refined automatically to obtain an acceptable level of accuracy by increasing p-levels non-uniformly. To verify the proposed algorithm, the limit value approach is proposed which utilizes the exact strain energy computed from the extrapolation equation. A new pre-processor is developed for the p-version finite element program in which the vector graphic editor is used for the automatic generation of node connection and coordinate by halfedge solid data structure according to uniform or nonuniform p-distribution. The general 2-D algorithm is also developed to generate face modes and internal modes in accordance with different mesh types. The quality of the error estimator is investigated with the help of two mumerical examples. The results show that the sequences of p-distributions obtained by the proposed error indicator closely follow the optimal trajectory.

  • PDF

Stress Recovery Technique by Ordinary Kriging Interpolation in p-Adaptive Finite Element Method (적응적 p-Version 유한요소법에서 정규 크리깅에 의한 응력복구기법)

  • Woo, Kwang Sung;Jo, Jun Hyung;Lee, Dong Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.677-687
    • /
    • 2006
  • Kriging interpolation is one of the generally used interpolation techniques in Geostatistics field. This technique includes the experimental and theoretical variograms and the formulation of kriging interpolation. In contrast to the conventional least square method for stress recovery, kriging interpolation is based on the weighted least square method to obtain the estimated exact solution from the stress data at the Gauss points. The weight factor is determined by variogram modeling for interpolation of stress data apart from the conventional interpolation methods that use an equal weight factor. In addition to this, the p-level is increased non-uniformly or selectively through a posteriori error estimation based on SPR (superconvergent patch recovery) technique, proposed by Zienkiewicz and Zhu, by auto mesh p-refinement. The cut-out plate problem under tension has been tested to validate this approach. It also provides validity of kriging interpolation through comparing to existing least square method.

The Selective p-Distribution for Adaptive Refinement of L-Shaped Plates Subiected to Bending (휨을 받는 L-형 평판의 적응적 세분화를 위한 선택적 p-분배)

  • Woo, Kwang-Sung;Jo, Jun-Hyung;Lee, Seung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.533-541
    • /
    • 2007
  • The Zienkiewicz-Zhu(Z/Z) error estimate is slightly modified for the hierarchical p-refinement, and is then applied to L-shaped plates subjected to bending to demonstrate its effectiveness. An adaptive procedure in finite element analysis is presented by p-refinement of meshes in conjunction with a posteriori error estimator that is based on the superconvergent patch recovery(SPR) technique. The modified Z/Z error estimate p-refinement is different from the conventional approach because the high order shape functions based on integrals of Legendre polynomials are used to interpolate displacements within an element, on the other hand, the same order of basis function based on Pascal's triangle tree is also used to interpolate recovered stresses. The least-square method is used to fit a polynomial to the stresses computed at the sampling points. The strategy of finding a nearly optimal distribution of polynomial degrees on a fixed finite element mesh is discussed such that a particular element has to be refined automatically to obtain an acceptable level of accuracy by increasing p-levels non-uniformly or selectively. It is noted that the error decreases rapidly with an increase in the number of degrees of freedom and the sequences of p-distributions obtained by the proposed error indicator closely follow the optimal trajectory.

Development of Algorithm for 2-D Automatic Mesh Generation and Remeshing Technique Using Bubble Packing Method (I) -Linear Analysis- (버블패킹방법을 이용한 2차원 자동격자 생성 및 재구성 알고리듬 개발(I) -선형 해석-)

  • Jeong, Sun-Wan;Kim, Seung-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.1004-1014
    • /
    • 2001
  • The fully automatic algorithm from initial finite element mesh generation to remeshing in two dimensional geometry is introduced using bubble packing method (BPM) for finite element analysis. BPM determines the node placement by force-balancing configuration of bubbles and the triangular meshes are made by Delaunay triangulation with advancing front concept. In BPM, we suggest two node-search algorithms and the adaptive/recursive bubble controls to search the optimal nodal position. To use the automatically generated mesh information in FEA, the new enhanced bandwidth minimization scheme with high efficiency in CPU time is developed. In the remeshing stage, the mesh refinement is incorporated by the control of bubble size using two parameters. And Superconvergent Patch Recovery (SPR) technique is used for error estimation. To verify the capability of this algorithm, we consider two elasticity problems, one is the bending problem of short cantilever beam and the tension problem of infinite plate with hole. The numerical results indicate that the algorithm by BPM is able to refine the mesh based on a posteriori error and control the mesh size easily by two parameters.