• Title/Summary/Keyword: superconductor coil

Search Result 86, Processing Time 0.031 seconds

Analysis of Fault Current Limiting Characteristics According to Variation of Inductances in Separated Three-phase Flux-lock Type SFCL (분리된 삼상자속구속형 전류제한기의 인덕턴스 변화에 따른 전류제한 특성 분석)

  • Doo, Seung-Gyu;Du, Ho-Ik;Kim, Min-Ju;Park, Chung-Ryul;Kim, Yong-Jin;Lee, Dong-Hyeok;Han, Byoung-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.6
    • /
    • pp.522-525
    • /
    • 2009
  • We investigated the fault current characteristics of the separates three-phase flux-lock type superconducting fault current limiter(SFCL) according to the variation of inductances. The single-phase flux-lock type SFCL consists of two coils. The primary coil is wound in parallel to the secondary coil on an iron core. And superconductor is series connected on secondary coil. Superconductor is using the YBCO coated conductor. The separated three-phase flux-lock type SFCL consists of single-phase flux-phase type SFCL in each phase. To analyze the current limiting characteristics of a three-phase flux-lock type SFCL, the short circuit experiments were carried out fault such as the triple line-to-ground fault. The experimental result shows that fault current limiting characteristics of additive polarity winding was better than subtractive polarity winding and when the inductances of coil 2 was lower, resistances of YBCO CC was more generated.

A Study on Minimum Volume of Highly Homogeneous Superconducting Coil (균일자장 초전도코일의 체유최소화에 관한 연구)

  • 이승원;권영안
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.1
    • /
    • pp.38-43
    • /
    • 1985
  • Since the superconductor type II with high critical current and high critical magnetic field was discovered in 1961, there were many studies on the superconducting coil for high field and highly homogeneous field. The graphical method and the numerical method by Newton Raphson technique have been studied as the method for design of homogeneous superconducting coil. It is comparatively easy to get a compensating coil for any given main coil by the above methods, but it is too laborious to get a general solution for main coil dimension. This paper studies the optimal design method for minimum volume of superconducting coil under certain central field and highly homogeneous field. The present method makes use of the nonlinear programming for optimization. The optimal solution of NMR superconducting coils by this method are demonstrated very well.

  • PDF

Stability analysis of an insulationless HTS pancake coil under the magnitude of external magnetic field

  • Jung, Sung-Jun;Kim, Gyeong-Hun;Kim, Kwangmin;Park, Minwon;Yu, In-Keun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.4
    • /
    • pp.41-45
    • /
    • 2012
  • An HTS (high temperature superconducting) coil without insulation has been investigated since a metallic insulation was suggested in the mid-1980s. The advantage of an insulationless HTS pancake coil is that it is more stable than an insulated HTS pancake coil. This paper focuses on the various characteristics of the insulationless HTS pancake coil related with stability, especially under the external magnetic field. Because HTS pancake coil may be influenced by the external magnetic field in a real operational environment of electrical devices. First, charge-discharge test was performed for the characteristics evaluation of the insulationless HTS pancake coil as compared with insulated HTS pancake coil in liquid nitrogen at 77 K. Based on the experiment results, characteristics evaluation of the insulationless HTS pancake coil was implemented under the external magnetic field. In order to carry out the experiment, we have fabricated a cylindrical solenoid coil to apply the magnetic field. The various characteristics of the insulationless HTS pancake coil were evaluated for charge-discharge and over-current conditions. This paper proves that the insulationless HTS pancake coil is more stable than the insulated HTS pancake under the external magnetic field.

Analysis of transmission efficiency of the superconducting resonance coil according the materials of cooling system

  • Lee, Yu-Kyeong;Hwang, Jun-Won;Choi, Hyo-Sang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.46-49
    • /
    • 2016
  • The wireless power transfer (WPT) system using a magnetic resonance was based on magnetic resonance coupling of the transmission and the receiver coils. In these system, it is important to maintain a high quality-factor (Q-factor) to increase the transmission efficiency of WPT system. Our research team used a superconducting coil to increase the Q-factor of the magnetic resonance coil in WPT system. When the superconductor is applied in these system, we confirmed that transmission efficiency of WPT system was higher than normal conductor coil through a preceding study. The efficiency of the transmission and the receiver coil is affected by the magnetic shielding effect of materials around the coils. The magnetic shielding effect is dependent on the type, thickness, frequency, distance, shape of materials. Therefore, it is necessary to study the WPT system on the basis of these conditions. In this paper, the magnetic shield properties of the cooling system were analyzed using the High-Frequency Structure Simulation (HFSS, Ansys) program. We have used the shielding materials such as plastic, aluminum and iron, etc. As a result, when we applied the fiber reinforced polymer (FRP), the transmission efficiency of WPT was not affected because electromagnetic waves went through the FRP. On the other hand, in case of a iron and aluminum, transmission efficiency was decreased because of their electromagnetic shielding effect. Based on these results, the research to improve the transmission efficiency and reliability of WPT system is continuously necessary.

Design of 1 MW High-temperature Superconducting Motor with Water-cooled Armature (수냉식 전기자로 구성된 1 MW 고온초전도 동기모터의 설계)

  • Baik, S.K.;Lee, J.D.;Kim, S.H.;Lee, E.Y.;Sohn, M.H.;Kwon, Y.K.;Moon, T.S.;Park, H.J.;Kim, Y.C.;Lee, J.Y.;Hong, J.P.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1258-1260
    • /
    • 2005
  • Superconducting synchronous motors and generators have the field coil composed of superconductor with almost zero resistance at superconducting state. Therefore, co or loss at the conventional field coil is eliminated and the superconducting machine gets higher efficiency. The armature coil of the superconducting machine is composed of cower wire and supported by non-magnetic material such as FRP(Fiber Reinforced Plastic). Although a fully-superconducting machine with superconducting armature coil has been researched, it was not developed toward industrial application because of AC transporting loss and difficulty in construction of the cooling structure and so on. This paper contains the design procedure of a 1 MW superconducting synchronous motor using high-temperature superconductor only for the field coil. Especially, the armature coil is designed by water-cooling in order to dissipate Joule heat easily. Moreover, 3-dimensional electromagnetic design is conducted to get a proper design result and reduce design errors from 2-dimensional approach.

  • PDF

Quench Analysis in HTS Pancake Coil (고온 초전도체 팬케이크 코일의 퀜치 해석)

  • Park, C.S.;Ahn, T.K.;Park, K.W.;Kim, D.H.;Cha, G.S.;Seo, J.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.3
    • /
    • pp.6-9
    • /
    • 2009
  • The thermal characteristics of quench propagation is a crucial problem for the stability of the superconductor. The objective of this study is to simulate the quench propagation with the variation of disturbance energy in Bi-2223/Ag HTS pancake coil. In this analysis, the temperature-time trace of a point away from heater was calculated under conditions of different quench energy. The critical disturbance energy between quench propagation and quench recovering was calculated, In addition, the minimum quench energy with different transport currents was obtained through the present simulation. These results are significant to the application of HTS.

Characteristic evaluation of an insulationless superconducting coil (인슐레이션을 제거한 초전도 코일의 특성 평가)

  • Jung, Sung-Jun;Kim, Kwang-Min;Kim, Gyoung-Hun;Kim, Nam-Won;Park, Min-Won;Yu, In-Keun;Park, Tae-Joon;Kim, Tae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.824-825
    • /
    • 2011
  • This paper reports advantages of an insulationless high temperature superconductor (HTS) pancake coil compared with an insulated HTS pancake coil. The various characteristics of the insulationless HTS pancake coil were evaluated under charge-discharge conditions. Also over-current test was performed and the results were analysed to demonstrate that in terms of stability insulationless HTS pancake coil outperforms existing insulated HTS pancake coil.

  • PDF

Stress analysis of HTS racetrack coils for 10 MW class superconducting wind power generator (10 MW 급 초전도 풍력발전기용 고온초전도 레이스트렉 코일의 응력 해석)

  • Kim, Kwangmin;Kim, Gyeong-Hun;Park, Minwon;Yu, In-Keun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.2
    • /
    • pp.13-18
    • /
    • 2013
  • The authors designed a high temperature superconductor (HTS) racetrack coil for a 10 MW class superconducting synchronous wind turbine generator. The designed HTS racetrack coil was analyzed by an electromagnetic finite element method (FEM) to determine the magnetic field distribution, inductance, stress, etc. This paper describes the stress analysis and structure design result of the HTS racetrack coil for 10 MW class superconducting synchronous wind turbine generators, considering orthotropic material properties, a large magnetic field, and the resulting Lorentz force effect. Insulated HTS racetrack coils and no-insulation HTS racetrack coils were also considered. According to the results of the stress analysis, the no-insulation HTS racetrack coil results were better than the insulated HTS racetrack coil results.

"Leak Current" correction for critical current measurement of no-insulation HTS coil

  • Song, Jung-Bin;Hahn, Seungyong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.2
    • /
    • pp.48-52
    • /
    • 2017
  • Discrepancy between a power supply current and an actual "spiral" coil current makes the conventional 4-probe measurement of a critical current ($I_c$) of a no-insulation (NI) high temperature superconductor (HTS) coil inaccurate and time-consuming. This paper presents a fast and accurate approach for $I_c$ measurement of NI HTS coils. With an NI HTS coil energized at a constant ramping rate, a complete analytic expression for the spiral coil current was obtained from a first-order partial differential equation that derived from an equivalent circuit model of the NI coil. From the analytic solution, both spiral coil current and radial leak current can be obtained simultaneously, which enables fast and accurate measurement of the NI coil $I_c$. To verify the proposed approach, an NI double-pancake (DP) coil, wound with GdBCO tapes of $6mm{\times}0.1mm$, was constructed and its $I_c$ was repeatedly measured with various ramping rates in a bath of liquid nitrogen at 77 K. The measured results agreed well with the calculated ones, which validates the proposed approach to measure $I_c$ of an NI HTS coil.