• 제목/요약/키워드: superconducting temperature

검색결과 1,173건 처리시간 0.027초

전기영동 초전도 후막선재의 현탁용매 영향 (Effects on Suspension Solution for Electrophoretic Superconducting Thick-film Wire)

  • 소대화;박정철;이영매;조용준;코로보바
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.81-84
    • /
    • 1999
  • For the research of the effects on suspension solution with YBCO and BSCCO for elcectrophoretic deposition to prepare superconducting thick-film wire, it was investigated that the preheating technique for the superconducting powders in vacuum system was used with various solvent solutions of acetone, ethanol, toluene and buthanol for electrophoresis. As a result it was useful to remove the influence of remaining and adsorbed solvent solution which was existed between and on the particle surfaces when the specimens of superconducting wire by electrophoresis were treated in vacuum of 10$\^$-3/ Torr and temperature around 200$^{\circ}C$ in bell-jar system. From the prepared superconducting wire samples, the critical current density, Jc was measured by 4-point prove method in liquid N$_2$ at the value of 10$\^$3/ to 10$\^$4/ A/$\textrm{cm}^2$, respectively, for the YBCO and BSCCO superconducting wires.

  • PDF

AC loss comparison of Bi-2223 and coated conductor HTS tapes under bending

  • Kim, Hae-Joon;Cho, Jeon-Wook;Sim, Ki-Deok;Kim, Jae-Ho;Kim, Seok-Ho;Jang, Hyun-Man;Lee, Soo-Gil
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권4호
    • /
    • pp.41-45
    • /
    • 2007
  • Superconductor is developed for applications in high-power devices such as power-transmission cables, transformers, motor and generators. In such applications, HTS tapes are subjected to various kinds of stress or strain. AC loss is also important consideration for many large-scale superconducting devices. In the fabrication of the devices, the critical current $(I_c)$ of the high temperature superconductor degrades due to many reasons including the tension applied by bending and thermal contraction. These bending or tension reduces the $I_c$ of superconducting wire and the $I_c$ degradation affects the AC loss of the wire. The $I_c$ degradation and AC loss (self field loss) of Bi-2223 HTS and Coated conductor were measured under tension and bending conditions at 77K and self-field.

The recent investigation and engineering application of YBCO bulk materials

  • Hong, Z;Jiang, Y;Viznichenko, R V;Coombs, T A
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제10권2호
    • /
    • pp.1-11
    • /
    • 2008
  • The application of bulk superconducting materials to electrical power systems is very attractive because bulk high temperature superconductors offer excellent electromagnetic properties. In recent years there has been significant progresses in the research and fabrication of superconducting bulk materials. Numerous efforts have been made worldwide to make bulk YBCO as a replacement of the conventional magnets to produce larger magnetic field and hence to improve the device performance in electrical power applications. This paper gives a comprehensive review of different applications of bulk HTS materials, concentrating in three areas including superconducting bearing, superconducting motors and high field magnets. The advantages of applying superconducting material into each application are analysed. The status of current research in each section is summarized and examples are given to demonstrate how YBCO bulk materials can benefit the design of electrical devices. Several numerical models which calculate the electromagnetic properties of bulk superconductors are introduced and finally the article concludes with a review on the studies of the demagnetisation effect in superconducting bulk magnets which is extremely relevant to applying superconducting technology to rotating machines.

유한요소법을 이용한 고온초전도 동기모터 특성해석 (Performance evaluation of Superconducting synchronous motor via Finite element method)

  • 백승규;김석환;손명환;조영식;서무교;권영길;류강식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.720-722
    • /
    • 2002
  • Superconducting synchronous motor using HTS(high-temperature superconducting) field windings has a lot of advantages over LTS(Jow-temperature superconducting) synchronous machine. A recently developed 5000[hp] HTS motor represents 1/2 reduction in weight and volume compared to an induction type conventional machine. Furthermore. 40% machine loss is reduced compared to the industry average. Based on a conceptual design, a 100[hp] HTS synchronous motor is modeled by F.E.M(Finite Element Method) and the performance is predicted in this paper

  • PDF

Electrical Strength of the Insulating Materials for High-Tc Superconducting Devices

  • Bae, Duck-Kweon;Kim, Chung-Hyeok;Oh, Yong-Cheul;Kim, Jin-Sa;Shin, Cheol-Gee;Song, Min-Jong;Lee, Joon-Ung
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.149-150
    • /
    • 2005
  • According to the trend for electric power equipment of high capacity and reduction of its size, the needs for the new high performance electric equipments become more and more important. On of the possible solution is high temperature superconducting (HTS) power application. Following the successful development of practical HTS wires, there have been renewed activities in developing superconducting power equipment. HTS equipments have to be operated in a coolant such as liquid nitrogen ($LN_2$) or cooled by conduction-cooling method such as using Gifford-McMahon (G-M) cryocooler to maintain the temperature below critical level. In this paper, the dielectric strength of unfilled epoxy and filled epoxy in $LN_2$ was analyzed. The filled epoxy composite not only compensates for this fragile property but enhances its dielectric strength.

  • PDF

나노구조 박막의 Morphology에 따른 초전도 특성 변화에 관한 연구 (Effects of Morphology on Nanostructured Superconducting Thin Film)

  • 고태준
    • 한국자기학회지
    • /
    • 제16권1호
    • /
    • pp.71-74
    • /
    • 2006
  • 나노구조 초전도 박막의 모폴로지를 열처리를 통해 변화시키며 이에 따른 박막의 초전도 특성을 면저항과 터널링 측정을 통해 연구하였다. 면저항 측정결과 초전도 박막의 임계온도가 열처리 온도에 따라 증가함을 알 수 있었다. 터널링 측정방법을 통해 포논 스펙트럼을 분석한 결과 열처리 후 횡 포논 모드에 변화가 나타남을 알 수 있었다. 이러한 결과들을 통해 나노구조 박막의 모폴로지가 박막의 초전도 특성에 미치는 영향을 이해할 수 있다.

초전도 배전 케이블 계통에서의 과도상태 해석 (Analysis of Transient State in the Superconducting distribution Cable Systems)

  • 김남열;이종범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 A
    • /
    • pp.555-557
    • /
    • 2003
  • As electric power transmission systems grow to supply the increasing electric power demand, transmission capacity is larger. but that's really difficult to secure the location for power transmission and distribution to user. The high temperature superconducting(HTS) cable is a method to solve this problem. But for applying to real systems, it needs to investigate the effect of HTS cable. The most important things is the investigation of fault condition. the fault on HTS cable include the quench state. When a fault occur in a circuit, three critical parameters(temperature, current density, magnetic field) exist. when one of these parameters exceeds the critical value, the superconducting becomes normal-conducting. f the cooling power is insufficient to recover the superconducting state, the normal-conducting zone expands. In order to solve these problem, this paper present simulate the quench state considering the over-current and over-voltage in the informal circuit and analyze the quench state.

  • PDF

Bi system bulk의 superconducting properties (A Study on the Superconducting prperties of Bi system bulk)

  • 이상헌
    • 전기학회논문지
    • /
    • 제59권2호
    • /
    • pp.352-354
    • /
    • 2010
  • The effects of Au addition on the structure and the superconducting properties of Bi system bulk have been investigated. Au exists in the metalic form in above materials. It does not affect the formation and structure of the BiSrCaCuO(2223) phase. The superconducting transition temperature Tc does not change for $Bi_{1.7}Pb_{0.3}Sr_2Ca_2Cu_3O$ composite However Au doping can make the grains smaller. Metallic Au can make gathers on the grains boundary and lead to the increment of critical transport current density. The current density of $Bi_{1.7}Pb_{0.3}Sr_2Ca_2Cu_3Au_{0.5}O$ was 1000A/$cm^2$ at liquid nitrogen temperature.

고온초전도 계자코일의 설계 및 제작 (Design and Fabrication of High-Tc Superconducting Field coils)

  • 백승규;장현만;고락길;손명환;권영길;류강식;조영식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.775-777
    • /
    • 2000
  • Superconducting racetrack coils are used in areas of generators, motors, wiggler magnets and so on. Especially now a days many advanced nations including U.S., Japan are developing high temperature superconducting(HTS) wire which has better performance than low temperature superconducting(LTS) wire. Most of HTS wires such as Bi-2223 are manufactured with PIT(Power In Tube Method) process, so the shape of the wire looks like tape different from LTS wire of round shape as normal conductors. Generally HTS racetrack coils are composed of a few partial double-pancake colis and then the double-pancakes are jointed each other according to their applications.

  • PDF

Calculation of Joule heating and temperature distribution generated in the KSTAR superconducting magnet structure

  • Seungyon Cho;Park, Chang-Ho;Sa, Jeong-Woo
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제4권1호
    • /
    • pp.78-83
    • /
    • 2002
  • Since the KSTAR superconducting magnet structure should be maintained at a cryogenic temperature of about 4 K, even a small amount of heat might be a major cause of the temperature rise of the structure. The Joule heating by eddy currents induced in the magnet structure during the KSTAR operation was found to be a critical parameter for designing the cooling scheme of the magnet structure as well as defining the requirements of the refrigerator for the cryogenic system. Based on the Joule heating calculation, it was revealed that the bulk temperature rise of the magnet coil structure was less than 1 K. The local maximum temperature especially at the inboard leg of the TF coil structure increased as high as about 21 K for the plasma vertical disruption scenario. For the CS coil structure, the maximum temperature was obtained from the PF fast discharging scenario. This means that the vertical disruption and PF fast discharging scenarios are the major scenarios for the design of TF and CS coil structures, respectively. For the reference scenario, the location of maximum temperature spot changes according to the transient current variation of each PF coil.